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Dual-Wideband Low-Profile Three-Notch Patch
Antenna With Indirect Differential Feeding

for 5G Millimeter-Wave Applications
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Abstract—This study presents a dual-wideband, low-profile
antenna designed using novel design approaches, operating across
the full 5G millimeter-wave bands around 28 GHz and 38.5
GHz. It covers n257, n258, n259, n260, and n261, spanning a
total range of 24.25–29.5 GHz and 37–43.5 GHz. The proposed
design incorporates a novel three-notch patch (TNP) antenna and
an indirect differential feeding (IDF) configuration. The center-
located hyperbolic notch and IDF, with the aid of two side-
located rectangular notches for higher-band impedance matching,
enable dual-wideband operation while also providing high cross-
polarization discrimination. The simulated 2:1 VSWR bandwidth
of the proposed TNP antenna is 24.2–29.6 GHz (20.1%) and
37.0–44.0 GHz (17.3%). During the fabrication of the array, a
compact balun was designed and integrated into the proposed
TNP antenna because no commercial RFIC fully covering the
n257–n261 bands was available at the lab stage. The measured
bandwidth of 20.5% in the lower band and 15.7% in the higher
band confirmed its dual-wide bandwidth characteristic.

Index Terms—Dual-Wideband, Three-notch Patch (TNP) An-
tenna, Indirect Differential Feeding (IDF), 5G, Millimeter-wave
(mmWave).

I. INTRODUCTION

S INCE the first commercialization of 5G millimeter-wave
(mmWave) communication, design technologies for 5G

mmWave antennas and metasurfaces have matured, targeting
various frequency bands around 28 GHz and 38.5 GHz [1]-
[19]. Over time, the operating frequencies of 5G RFICs
from leading global companies have expanded beyond the
commonly used bands of 26.5–29.5 GHz (n257, n261) and
37–40 GHz (n260) to also include 24.25–27.5 GHz (n258)
and 39.5–43.5 GHz (n259), in order to meet the diverse
requirements of different countries [1]. However, with a few
exceptions [11], [12], most existing 5G mmWave dual-band or
wideband antennas do not cover the n258 or n259 bands [13]-
[19], leading to a critical issue where the antenna performance
fails to keep up with the capabilities of RFICs.
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(a) (b)

Fig. 1. Illustration of (a) the three-notch patch (TNP) antenna with an indirect
differential feeding (IDF) bridge, and (b) the PCB stackup.

Present antennas that fully [11], [12] or nearly [13] cover
the n257–n261 bands have been designed using different
approaches. In [11], the bandwidth of dipole and shorted patch
antennas was widened by placing parasitic elements around the
elements. In [12], grounded dipole antennas with baluns and
parasitic patches were designed. In [13], various characteristic
modes were induced by a slotted patch antenna and utilized.

Meanwhile, the use of differential feeding for antennas
enables wideband operation in 5G millimeter-wave bands [20]-
[24], helps achieve a symmetric radiation pattern in the E-
plane, and is preferred when integrated with differential circuit
components. Indirect feeding, such as proximity coupling or
L-probe, is also commonly used for multi-band or wideband
operation [14], [25], [26].

We present a dual-wideband, low-profile antenna with
novel design approaches that fully covers the 5G mmWave
n257–n261 bands. The configuration of a three-notch patch
(TNP) antenna and an indirect differential feeding (IDF) mech-
anism is demonstrated. The center-located hyperbolic notch
and IDF enable wide-band operation while also providing
high cross-polarization discrimination (XPD). Meanwhile, the
two side-located rectangular notches enhance the impedance
matching of the IDF in the higher band, ensuring dual-
wideband performance. During the fabrication of the array, the
TNP antenna was integrated with a compact balun because no
RFIC fully covering n257–n261 was available at the lab stage.

II. ANTENNA CONFIGURATION AND MECHANISM

A. Three-notch Patch (TNP) Antenna

Fig. 1 shows the proposed TNP antenna, its main compo-
nents (the TNP, an IDF bridge, and a compact balun), and the
PCB stackup information. The simulation results shown in Fig.
4, 5, and 6 are based on the original TNP antenna (without the
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(a) (b)

Fig. 2. Design parameters of the proposed antenna components: (a) The
TNP in L1 with the IDF bridge in L4-L9. The assigned design parameter
values (in mm) are PX=3.15, PY =6.7, LNS=1.35, gNS=1.7, WNS=0.2,
WNC=2b=0.2, a=3, b=0.1, gTI=0.7, DIDF =1, LIDF =3.3, WIDF =0.1,
D1=0.09, D2=0.15, and D3=0.06.

(a) (b)

Fig. 3. Surface current distribution on (a) the TNP in L1 and (b) the IDF
bridge in L4.

balun), which in simulation is excited by two ports at a 180-
degree phase difference. Fig. 1(b) illustrates that the proposed
antenna was fabricated using a stackup-PCB process featuring
fine metal patterning and utilizing a total of 12 metal layers (L1
to L12), each copper layer being 18 µm thick. The thicknesses
of the prepreg and core layers are indicated in the figure. The
relative permittivity and loss tangent for the prepreg layers are
3.2 and 0.004, respectively, while those for the core layer are
3.4 and 0.004. The total thickness of the proposed antenna is
856 µm. Fig. 2 shows the configuration of the TNP and IDF
bridge, along with their design parameters.

B. Mechanism of Dual-Wideband and High XPD

Fig. 3(a) shows the surface current distribution on the TNP
antenna at 28 GHz and 40 GHz. It can be observed that the
varying length of the surface current path, formed along the
contour of the center-located hyperbolic notch, enables dual-
wideband operation. Notably, the two side-located rectangular
notches are strongly coupled with the surface currents at 40
GHz, indicating the importance of these side notches for
impedance matching in the higher band. The proposed TNP
antenna also achieves high XPD by canceling out radiation
from cross-polarized surface currents, as shown in Fig. 3(a).
The long surface current path formed on the IDF bridge, shown
in Fig. 3(b), also contributes to high XPD by constraining the
orientation of most surface currents on the TNP.

Fig. 4 illustrates the influence of the two side-located
notches. While the center notch enables wideband operation,
the side notches facilitate dual-band operation by dramatically
improving impedance matching at the higher band.
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Fig. 4. Simulated differential VSWR: (a) with and without the two side
notches, and for a variation in (b) LNS (units: mm).

(a) (b)

Fig. 5. (a) Illustration of the electromagnetic coupling between the TNP
antenna and the IDF bridge, along with the corresponding equivalent circuit
model. The optimized circuit parameter values are as follows: (LB1, LB2,
LB3, RLB2

, RLB3
, LD1, LD2, CP , CB3, CD1, CD2, T )=(14, 0.6, 0.12,

9.3, 3.56, 9.3, 0.30, 0.052, 41.9, 190.4, 72.9, 518.9, 0.364) where the units
are nH, Ω, and fF, respectively. (b) Differential VSWR results obtained from
HFSS and equivalent circuit simulations for varying dTI (in mm). The case
with dTI = 0.156 corresponds to the optimized configuration, whereas
dTI = 0.098 represents a comparative case with updated circuit parameters:
(LB2, LD1, LD2, CP , CD1)=(0.65, 0.196, 0.048, 46.1, 72.9).
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Fig. 6. Simulated (a) differential VSWR, and (b) peak gain and total efficiency
versus frequency for the TNP antenna element.

Fig. 5(a) demonstrates the electromagnetic (EM) coupling
between the TNP antenna and the IDF bridge, which is
significantly influenced by three design parameters: DIDF ,
dTI , and LIDF . The equivalent circuit of the TNP antenna
is also shown in the figure. The circuit parameters exhibit
complex variations in response to changes in the actual design
parameters of the TNP antenna. For example, Fig. 5(b) shows
the effect of dTI on the differential VSWR by comparing both
HFSS and circuit simulations.

Based on these findings, the final design parameter values
have been determined and are shown in Fig. 2. Fig. 6(a) shows
that the proposed TNP antenna achieves a wide dual-band 2:1
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Fig. 7. (a) Illustration of the compact balun, and (b) simulated phase
difference (∠S21 − ∠S31) and magnitudes |S21| and |S31|. The assigned
design parameter values (in mm) are D1=0.3, R1=0.6, LT =0.8, LS=1.085,
W1=0.25, W2=0.17, and W3=0.05.

VSWR bandwidth of 24.2–29.6 GHz (20.1%) and 37.0–44.0
GHz (17.3%), fully covering the target 5G mmWave bands
around 28 GHz and 38.5 GHz (n257–n261), as intended. Fig.
6(b) shows that the TNP antenna provides peak gains of 7.76
dBi at 26.5 GHz and 8.53 dBi at 40.0 GHz in the lower and
higher bands, respectively, with a total efficiency exceeding
85% across the entire operating bandwidth.

III. BALUN INTEGRATION AND ARRAY EXPERIMENT

A. Design and Integration of Compact Balun

During the fabrication of the array, a compact balun was de-
signed and integrated into the proposed TNP antenna because
no commercial RFIC fully covering the n257–n261 bands was
available at the lab stage. As a result, a slight bandwidth
reduction and a shift were observed in the TNP antenna array.
Although various types of 180° hybrid baluns exist [27], they
are generally larger than half a wavelength, making them
difficult to integrate compactly with the antenna element in
an array configuration. In this paper, the four-port 180° hybrid
structure introduced in [28] is modified into a three-port hybrid
with a small footprint. The narrow balun slot width of 50 µm
was feasible using the stackup-PCB fabrication process.

Fig. 7 shows the balun. The transmission phase difference
is maintained at a 180° with a maximum error of 0.86° across
the entire bandwidth. The average transmission magnitude is
3.89 dB, with a maximum magnitude imbalance of 0.14 dB.

B. Mirror Array Configuration and Measurement

Fig. 8(a) shows the mirrored array configuration of the TNP
antenna, integrated with both baluns and connectors. In the
process of integrating the balun into the TNP antenna, a balun-
to-IDF transition is implemented, as shown in the figure. The
mirrored-element arrangement is adopted to achieve higher
XPD [29], [30]. At the element level, the TNP antenna
inherently exhibits high XPD in the H-plane. As shown in
Fig. 8(b), the mirrored array configuration ensures that the
surface currents across the E-cut line are equal in magnitude
but flow in opposite directions, leading to mutual cancellation
in radiation in the E-plane. Fig. 8(c) clearly demonstrates this
difference in E-plane XPD between the two configurations.
Although Fig. 8(d) shows similar realized gain for both cases,
the mirrored configuration is selected due to its significantly
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Fig. 8. (a) Illustration of the mirrored array configuration of the TNP antenna,
integrated with baluns and connectors. The assigned design parameter values
(in mm) are SX=19.8, SY =10, dA=4.9, L1=1.8, L2=0.75, and W4=0.05. (b)
Surface current distribution. (c) Simulated cross-polarized radiation patterns.
(b) and (c) are plotted at the center frequencies of the lower band (LB) and
higher band (HB), with the conventional configuration on the left and the
mirrored configuration on the right. (d) Realized gain versus frequency. (e)
Photographs of the fabricated sample and the measurement setup.
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Fig. 9. Simulated and measured (a) VSWR, and (b) peak gain and total
efficiency versus frequency for the 1×4 TNP antenna array.

better XPD performance. Fig. 8(e) presents photographs of the
fabricated sample and the measurement setup.

Fig. 9(a) shows the simulated and measured differential
VSWR of the 1×4 TNP antenna array. The simulated 2:1
VSWR bandwidth of the array in the lower band is 23.7–29.2
GHz (20.8%), while in the higher band it is 36.3–42.1 GHz
(14.8%). The measured 2:1 VSWR bandwidth of the array
is 23.6–29.0 GHz (20.5%) in the lower band, and 34.6–40.5
GHz (15.7%) in the higher band. The downward shift in the
higher band, along with the increased bandwidth in the lower
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Fig. 10. Simulated (measured) E- and H-plane radiation patterns at (a) 24.25
GHz (24.5 GHz), (b) 26.5 GHz (27.0 GHz), (c) 29.5 GHz (29.5 GHz), (d)
37 GHz (37 GHz), and (e) 39.25 GHz (38.5 GHz).

band, are due to fabrication errors that occurred during in-
house manual connector integration using solder paste.

Fig. 9(b) shows the simulated and measured peak gains of
the array in the lower band are 11.9 dBi at 26.5 GHz and 12.1
dBi at 27.0 GHz, respectively, while in the higher band they
are 12.7 dBi at 39.25 GHz and 12.3 dBi at 38.5 GHz. The fig-
ure also presents the simulated and measured total efficiency,
which exhibits a similar downward shift in the higher band.
The proposed TNP array maintains a total efficiency exceeding
60% across most of the operating bandwidth.

Fig. 10 shows the simulated and measured E- and H-plane
radiation patterns at 24.25 (24.25), 26.5 (27.0), 29.5 (29.5),
37 (37), and 39.25 (38.5) GHz, respectively. The array radia-
tion patterns were measured using the active element pattern
synthesis technique [6]. Due to the bandwidth limitation of
the reference Ka-band horn antenna in our laboratory, gain
and radiation pattern measurements were taken only up to 40
GHz. Nonetheless, the accuracy of measurements up to 40
GHz indicates consistent performance beyond that frequency
range as well. It is further confirmed that the TNP antenna
array provides an excellent simulated and measured XPD of 35
dB, owing to its demonstrated element and array configuration.

Fig. 11 shows that the simulated and measured beam-
scanned radiation patterns agree well at the peak gain frequen-
cies in both the lower and higher bands. The simulated and
measured -3 dB scan range without grating lobe occurrence is
±45° in the lower band and ±34° in higher band, respectively.

C. Comparison and Discussion
The antennas proposed in [11] and [13] radiate at the

undesired frequency range of 29.5–37 GHz, which lies be-
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Fig. 11. Simulated (measured) scanned radiation patterns within -3 dB scan
range at (a) 26.5 GHz (27 GHz) and (b) 39.25 GHz (38.5 GHz).

TABLE I
COMPARISON OF 5G MMWAVE ANTENNAS THAT FULLY OR NEARLY

COVER THE N257-N261 BANDS

Ref. Frequency bands (GHz)
Peak

Realized
Gain (dBi)

Element
Size

(λ2
low)

Array
Size

(λ2
low)

Profile
(λlow)

[11] (A)24-44
(L)9;
(H)10

0.44×0.50 2.30×0.50 0.13

[12] (A)24-30; 37-43.5
(∗∗)(L)7.8;

(H)9.0
0.31×0.31 0.62×0.62 0.08

[13] (A)23.9-43.1
(∗∗)(L)8.6;
(H)12.1

0.43×0.43 1.70×1.70 0.12

This
work

(E)24.2-29.6 (20.1%);
37.0-44.0 (17.3%)

(AS)23.7-29.2 (20.8%);
36.3-42.1 (14.8%)

(AM)23.6-29.0 (20.5%);
34.6-40.5 (15.7%)

(L)12.1;
(H)12.3

0.39×0.79 1.56×0.79 0.067

* λlow is the free-space wavelength at the lowest operating frequency.
(E), (A) (E) and (A) refer to the element and array, respectively.
(S), (M) (S) and (M) refer to the simulation and measurement, respectively.
(L), (H) (L) and (H) refer to the lower and higher bands, respectively.
** Estimated from the gain-over-frequency plot.

tween the two operational 5G mmWave bands (24.25–29.5
GHz and 37–43.5 GHz), and both have a relatively thick
profile of 0.13λlow and 0.12λlow, respectively. Furthermore,
the antennas in [11] and [12] exhibit relatively low array
gain, remaining below 10 dBi in both 5G mmWave bands. In
contrast, the proposed TNP antenna achieves an element-level
dual-wide bandwidth that fully covers the n257–n261 bands,
provides a comparable array-level dual-wide bandwidth, de-
livers the highest array gain in both the lower and higher
bands, and maintains the lowest profile. Although the proposed
TNP antenna has the largest element size, the overall array
size remains acceptable, as it is smaller than that in [13] and
comparable to [11].

IV. CONCLUSION

A dual-wideband, low-profile antenna that fully covers
the 5G mmWave bands around 28 GHz and 38.5 GHz
(n257–n261) is presented. The proposed three-notch patch
(TNP) antenna achieves dual-wideband operation by incorpo-
rating one hyperbolic notch, two rectangular side notches, and
an indirect-differential feeding (IDF) scheme. A high cross-
polarization discrimination (XPD) level is attained through
careful element and array configurations. Array measurements
confirm symmetric radiation patterns and good scan perfor-
mance in both lower and higher bands.
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