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Critical Angle Formulation of Nonuniform Plane Waves for Determining

Correct Refraction Angles at Planar Interface
Yongwan Kim , Hyunjun Yang , and Jungsuek Oh

Abstract— The expressions and properties of the critical angles of
nonuniform plane waves for determining the correct refraction angle
at the infinite planar interface of two linear, isotropic, and homogeneous
media are presented. The two media could be lossless or lossy. For the
case where the complex wave vector of Adler–Chu–Fano formulation and
the normal vector to the interface are coplanar, a critical angle equation,
which is simpler than the extant one, under the condition that one or two
critical angles exist, is formulated. In addition, for the case where the
complex wave vector and normal vector to the interface are noncoplanar,
a critical angle equation is formulated, rendering the 3-D nonuniform
plane wave refraction feasible for utilization in many areas of optics. The
presented critical angle equations were validated for various nonuniform
plane waves and media.

Index Terms— Absorbing media, critical angle, deep penetration,
inhomogeneous plane waves, nonuniform plane waves, optics, ray tracing.

I. INTRODUCTION

The refraction of an electromagnetic (EM) plane wave on the
infinite planar interface between possibly lossy media is a widely
studied problem in optics and EM theory [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], which is used in a variety of areas,
e.g., leaky-wave antenna, remote sensing, EM ray-tracing technique,
material analysis/microscopy, interaction with biological tissues, and
metasurface [9], [10], [11], [12], [13], [14], [15], [16], [17], [18].
When an incident uniform plane wave in a lossless medium impinges
upon an infinite planar interface of a lossy medium, the application
of Snell’s law produces a refraction angle of complex value [19].
Furthermore, if this plane wave with a complex propagation angle
impinges upon another planar interface, both incidence and refraction
angles at the second interface may be complex-valued. The physical
meaning of these complex-valued propagation angles is difficult to
understand. The Adler–Chu–Fano formulation in [20] allows for a
physically meaningful interpretation in this situation by keeping all
angles as real values while separating the propagation vector into
attenuation vector �α and phase vector �β, i.e., the complex propagation
angle is converted into two real angles—equal attenuation angle γ and
phase angle ξ . Hence, the wave becomes a nonuniform plane wave
[20]. Consequently, when a nonuniform plane wave impinges upon
a planar interface, the incidence and refraction angles can be written
as γ1 and ξ1 and γ2 and ξ2, respectively.
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Two types of critical angles exist for the refraction of nonuniform
plane waves [20], [21], [22]. The first one is ξγ1 , which is ξ1 leading

to γ2 = 90◦, and the second one is ξξ1 , which is ξ1 leading to

ξ2 = 90◦. The determination of γ2 or ξ2 when ξ1 exceeds ξγ,ξ1
may produce ambiguous results due to the multivalued function
property of the inverse trigonometric function [20], [21], which means

that, when ξ1 ∈ (ξ
γ,ξ
1 , 90◦], γ2 or ξ2 can have two different

values mathematically. γ2 or ξ2 could be in the intervals [0, 90◦)
or (90◦, 180◦], i.e., nonmonotonic or monotonic behavior of γ2 or
ξ2 [21]. Roy et al. [20] and Frezza and Tedeschi [21] discovered the
correct determination to be the monotonic behavior. Therefore, ξγ,ξ1
must be calculated to determine the correct values of γ2 or ξ2, which
could be in the interval [0, 90◦] or [90◦, 180◦].

For the case where the incidence propagation vectors �α1 and
�β1 and the unit vector normal to interface ẑ are coplanar, i.e.,

a two-dimensional (2-D) case, an exact analytic expression of ξγ,ξ1
was presented in [22]. In this study, however, we derive a simpler

expression of ξγ,ξ1 for the 2-D case, which is more efficient for
areas requiring massive computations, such as the EM ray-tracing
simulation. In addition, we present the conditions of the plane wave
and media that produce one or two critical angles for the 2-D case
with the interface between two possibly lossy media, further from
[23], which thoroughly treated those conditions with the interface
between lossless and lossy media to deal with practical applications
of deep penetration condition. For the 3-D case, i.e., the case where
�α1, �β1, and ẑ are noncoplanar, which is more common than the
2-D case, albeit more complex, no analytic expression of ξγ,ξ1 has
been presented yet. Consequently, the 3-D case of the refraction of
nonuniform plane waves has not been applied to most areas utilizing
the nonuniform plane wave theory, such as EM ray-tracing simulation
and deep penetration condition analysis in lossy media [14], [15],
[16], [22], [23], although it is the more general case between the
two. In this study, an analytic expression and properties of ξγ,ξ1
for the 3-D case are presented, rendering the 3-D nonuniform plane
wave refraction feasible for utilization in many areas of optics. For
the EM ray-tracing technique, it will lead to more accurate analysis
results for complex penetrable structures. It can also be widely used
to expand various EM theories related to nonuniform plane waves.
For instance, for deep penetration condition theory, whose practical
2-D implementation in the real world is verified in [24] and which
can be applied to numerous practical applications such as ground
penetrating radar [25] and leaky-wave antenna for ultrahigh-field
magnetic resonance imaging [26], our study could contribute to derive
the effect caused by the transition from 2-D to 3-D condition.

II. SIMPLE CRITICAL ANGLE FORMULATION OF 2-D CASE

A. Critical Angle Formulation and Condition That One or Two
Critical Angles Exist

Fig. 1 shows the incidence and refraction of nonuniform plane
wave at the planar interface between two media for the 2-D case.
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Fig. 1. Incidence and refraction of nonuniform plane wave on the planar
interface between two isotropic homogeneous possibly lossy media when �α1
and �β1 and the unit vector normal to the interface ẑ are coplanar, i.e., 2-D
case.

Frezza and Tedeschi [22] derived a critical angle formulation for the
2-D case with lossy first medium, which is presented as follows:
ξ
γ,ξ
1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tan−1

{
tan ρ1 ±

√
tan2 ρ1 − 4χ (χ − 1)

2 (χ − 1)

}
, χ �= 1 (1-1)

tan−1
(

1

tan ρ1

)
, χ = 1 (1-2)

where ρ1 is described in Fig. 1, and χ = (α02β02)/(α01β01). α01 and
β01, and α02 and β02 are the intrinsic attenuation and phase constants
of media 1 and 2, respectively [20]. We proposed a critical angle for-
mulation that is simpler than (1) and it is expressed in (2) and (3), as
shown at the bottom of the next page, where γ = (2α02β02)/(α1β1),
and α1 and β1 are the effective attenuation and phase constants
of the incidence plane wave, respectively [20]. To formulate these
novel critical angle equations, we converted γ1 in (5) from [22]
to ξ1 + ρ1 and performed some mathematical manipulation using
several trigonometric identities, resulting in separation of ξ1 from
other terms. In addition, we considered the multivalued function
property of the inverse cosine function, i.e., cos−1(cosρ1 − γ ) could
be 2π−cos−1(cosρ1−γ ), leading to the two different solutions in (3).
The conditions of nonuniform plane wave and media that create one
or two critical angles are also presented in (2) and (3), respectively.
These conditions were obtained by analyzing the range of ξγ,ξc1 and

ξ
γ,ξ
c2 in (3). The condition in (2) equals 0 ≤ ξ

γ,ξ
c1 = ξ

γ,ξ
c2 ≤ 90◦ or

ξ
γ,ξ
c1 satisfies 0 ≤ ξ

γ,ξ
c1 ≤ 90◦, but ξγ,ξc2 does not satisfy 0 ≤ ξ

γ,ξ
c2 ≤

90◦, resulting in only one critical angle. On the other hand, the condi-
tion in (3) equals ξγ,ξc1 �= ξ

γ,ξ
c2 and not only 0 ≤ ξ

γ,ξ
c1 ≤ 90◦ but also

0 ≤ ξ
γ,ξ
c2 ≤ 90◦, leading to two different critical angles. Equations

(2) and (3) can be used regardless of whether each medium is lossy
or lossless and return the same results as (1) when the first medium
is lossy because all of those equations are derived from [22, eq. (5)].

B. Determination of Correct Refraction Angles γ2 and ξ2
1) Case Where ρ1 ≤ 0orα02β02 �= α1β1 cos2(ρ1/2): To calculate

the correct refraction angles γ2 and ξ2, first, ξγ,ξ1 should be deter-

mined, whether it is ξγ1 or ξξ1 , because ξγ1 and ξ
ξ
1 have the same

analytic expression [22]. It can be determined using [22, eq. (10)].
After determining ξγ1 or ξξ1 , based on the results of [12], [20], [21],

[22], γ2 and ξ2 can be computed from the following expressions when
only one ξγ1 or ξξ1 exists:

γ2 =

⎧⎪⎪⎨
⎪⎪⎩

sin−1
(
α1 sin γ1
α2

)
, for ξ1 ≤ ξ

γ
1 (4-1)

180◦ − sin−1
(
α1 sin γ1
α2

)
, for ξ1 > ξ

γ
1 (4-2)

ξ2 =

⎧⎪⎪⎨
⎪⎪⎩

sin−1
(
β1 sin ξ1
β2

)
, for ξ1 ≤ ξ

ξ
1 (5-1)

180◦ − sin−1
(
β1 sin ξ1
β2

)
, for ξ1 > ξ

ξ
1 (5-2)

where α1, β1, γ1, and ξ1 are known variables, and α2 and β2 can be
computed from [20, eqs. (14) and (13)], respectively.

Baccarelli et al. [23] demonstrated the coexistence of two ξγ1 or ξξ1 .
For this circumstance, γ2 and ξ2 can be calculated from the following
expressions:

γ2 =

⎧⎪⎪⎨
⎪⎪⎩

sin−1
(
α1 sin γ1
α2

)
, for ξ1 ≤ ξ

γ
c1 or ξ1 ≥ ξ

γ
c2

180◦ − sin−1
(
α1 sin γ1
α2

)
, for ξγc1 < ξ1 < ξ

γ
c2

(6)

ξ2 =

⎧⎪⎪⎨
⎪⎪⎩

sin−1
(
β1 sin ξ1
β2

)
, for ξ1 ≤ ξ

ξ
c1 or ξ1 ≥ ξ

ξ
c2

180◦ − sin−1
(
β1 sin ξ1
β2

)
, for ξξc1 < ξ1 < ξ

ξ
c2

(7)

2) Case Where ρ1 > 0 and α02β02 = α1β1 cos2(ρ1/2): When

ρ1 > 0 and α02β02 = α1β1 cos2(ρ1/2), i.e., ξγ,ξc1 = ξ
γ,ξ
c2 , the

refraction angle reaches 90◦ at the critical angle, and it decreases right
after this critical angle as ξ1 increases (see [23, Fig. 8]). To prove this,
let us consider a situation where α1 = α1 + ε, in which ε is a very
small arbitrary positive constant. Then, the condition in (3) is satisfied
and there exist two different critical angles. Also, these two critical
angles have values that satisfy ξγ,ξc1 < ξ

γ,ξ
1 with exact α1 < ξ

γ,ξ
c2 .

On the other hand, when α1 = α1−ε, all conditions in (2) and (3) are
not satisfied and there is no critical angle. In this case, the continuity

of the solution requires two ξ
γ
1 or ξξ1 , not one ξγ1 and ξ

ξ
1 , when

α1 = α1 + ε. In other words, when exact α1 is considered, the
continuity of the solution requires the refraction angle to decrease
right after the critical angle as ξ1 increases. As a result, γ2 and ξ2
can be computed from (4-1) and (5-1), respectively, regardless of

whether ξ1 is smaller or larger than ξγ,ξ1 .

III. NOVEL CRITICAL ANGLE FORMULATION OF 3-D CASE

A. Critical Angle Formulation

When incident propagation vectors �α1 and �β1 and the unit vector
normal to the interface ẑ are noncoplanar, the phase matching
condition at the interface satisfies the following conditions [20]:

α1 sin γ1 = α2 sin γ2 (8)

β1 sin ξ1 = β2 sin ξ2 (9)

where the angles γ1, γ2, ξ1, and ξ2 are shown in Fig. 2. Furthermore,
we derive two more equations [12] using the Adler–Chu–Fano
formulation from [27]

α2
2 − β2

2 = α2
02 − β2

02 (10)

α2β2 cos ρ2 = α02β02 (11)

where angle ρ2 is shown in Fig. 2. To calculate ξ
ξ
1 , we impose

ξ2 = 90◦ for all equations. Then, by performing some algebraic
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Fig. 2. Incidence and refraction of the nonuniform plane wave on the planar
interface between two isotropic homogeneous possibly lossy media when �α1
and �β1 and the unit vector normal to the interface ẑ are noncoplanar, i.e., the
3-D case.

manipulations with (8), (9), (11), and [20, eq. (21)], we derive the
following equation:

sin ξξ1 = α02β02

α1β1 sin γ ξ1 cosψξ
(12)

where γ ξ1 and ψξ represent γ1 and ψ when ξ2 = 90◦, respectively.

As explained in Section II-B, the formulation of ξξ1 and ξγ1 possesses
the same form for the 2-D case. By performing similar algebra as
that which yielded (12), after imposing γ2 = 90◦, we discovered that
the formulations of ξγ1 and ξξ1 have the same form not only for the
2-D case but also for the 3-D case. It means

sin ξγ,ξ1 = α02β02

α1β1 sin γ γ,ξ1 cosψγ,ξ
(13)

where γ γ1 and ψγ represent γ1 and ψ when γ2 = 90◦. Inserting [20,
eq. (20)] into (13) leads to the following:

cos ξξ,γ1 cos γ ξ,γ1 = cos ρ1 − α02β02

α1β1
. (14)

Now, we set ρ1 and y0 = sin γ1 sinψ as constants. Then, the
routes of incident propagation vectors �α1 and �β1 would become,
as shown in Fig. 3. Furthermore, by performing some algebra with
cos ρ1 = α̂1 · β̂1, we obtain the following expression:

cos ξγ,ξ1 cos γ γ,ξ1 = cos ρ1 ±
√

1 − y2
0 − cos2γ

γ,ξ
1 sin ξγ,ξ1 . (15)

After performing some algebra with (14) and (15), we finally for-
mulate the critical angle equation as (16), where A = cos ρ1 −

Fig. 3. Routes of incident propagation vectors �α1 and �β1 when ρ1 and y0
are constants.

(2α02β02)/(α1β1) and B = 1 − y2
0

ξ
γ,ξ
1 = cos−1

√√√√ A cos ρ1 ±
√(

A2 − B
) (

cos2ρ1 − B
)

2B
+ 0.5. (16)

B. Choice of Correct Sign

Equation (16) contains a positive–negative sign inside the square
root; therefore, the correct sign should be chosen. A reason why this
sign appears is because of the existence of two most possible cases
for the relative position of �α1 and �β1 satisfying the same constants ρ1
and y0. Fig. 4 reveals the possible cases of relative position between
�α1 and �β1, where �αp1 and χ1 represent �α1 projected on the xz
plane and the angle between the +z-axis and −�αp1, respectively. The
possible three cases of relative position of �αp1 and �β1 are (χ1 < ξ1),

(χ1 > ξ1), and (χ1 = ξ1 or �αp1 = 0). Each case can be easily

distinguished, considering whether the y-component of α̂1 × β̂1 is
positive, negative, or zero. The y-component of α̂1 × β̂1 can be
represented as δ in (17) when ξ1 ∈ (0, 90◦]

δ = cos γ1 − cos ξ1 cos ρ1

sin ξ1
. (17)

The correct sign can be determined by selecting the one satisfying
the following conditions.

1) Case Where δ > 0 or δ < 0: Fig. 4(a) and (b) shows the
cases where δ is positive and negative, respectively. If |ξ1 − χ1| is
the same as in Fig. 4(a) and (b), the circumstances represented in
Fig. 4(a) and (b) could have the same ρ1 and y0. Therefore, we must
choose the appropriate sign in (16) considering whether the relative

ξ
γ,ξ
1 = cos−1 (cosρ1 − γ )− ρ1

2
, for (0 ≤ α02β02 < α01β01) or (ρ1 ≤ 0 and α01β01 = α02β02)

or
(
ρ1 > 0 and α02β02 = α1β1 cos2 ρ1

2

)
(2)

ξ
γ,ξ
1 :

⎧⎪⎪⎨
⎪⎪⎩
ξ
γ,ξ
c1 = cos−1 (cosρ1 − γ )− ρ1

2

ξ
γ,ξ
c2 = π − cos−1 (cosρ1 − γ )+ ρ1

2

, for ρ1 > 0 and α01β01 ≤ α02β02 < α1β1 cos2 ρ1

2
(3)
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Fig. 4. Possible case of relative position between �αp1 and �β1: (a) χ1 < ξ1,
(b) χ1 > ξ1, (c) χα1 = ξ1, and (d) �αp1 = 0.

position between �αp1 and �β1 satisfies χ1 < ξ1 or χ1 > ξ1, i.e., δ >
0 or δ < 0. For the case where δ > 0, the sign satisfying (18) should
be chosen. For the case where δ < 0, the sign satisfying (19) should
be chosen

sin2ξ
γ,ξ
1 cosρ1 >

α02β02

α1β1
(18)

sin2ξ
γ,ξ
1 cosρ1 <

α02β02

α1β1
. (19)

Equations (18) and (19) are equivalent to the case where δ is positive
and negative, respectively, when ξγ,ξ1 ∈ (0, 90◦). When ξγ,ξ1 = 0,
a second medium must be lossless according to (16). If this were
true and the incident wave was a nonuniform plane wave, a critical
angle ξγ1 = 0 would always exist regardless of whether δ is positive
or negative because ξ1 = 0 means ξ2 = 0, and ρ of nonuniform
plane wave in the lossless medium is always 90◦ [20].

There is a possibility that both positive and negative (16) simul-
taneously satisfy (18) or (19), which means that two critical angles
can exist for the 3-D case as well as the 2-D case. In this case, two

ξ
γ,ξ
1 would be called ξγ,ξc1 and ξγ,ξc2 , respectively, as in the 2-D case.

2) Case Where δ = 0: Fig. 4(c) and (d) shows the cases where δ
equals zero. In this case, cos2ρ1−B in (16) becomes zero. Hence, the
positive–negative sign becomes meaningless, and ξγ,ξ1 is simplified
as follows:

ξ
γ,ξ
1 = cos−1

√
A cos ρ1

2B
+ 0.5. (20)

C. Determination of Correct Refraction Angles γ2 and ξ2

1) Case Where δ �= 0: Similar to the 2-D case, first, ξγ,ξ1 should

be determined, whether it is ξ
γ
1 or ξξ1 , to compute the correct

γ2 and ξ2 because ξγ1 and ξ
ξ
1 have the same analytic expression,

as explained in Section III-A. Moreover, [22, eq. (10)] can be used in
this determination for not only the 2-D case but also for the 3-D case.
After ξγ1 or ξξ1 is determined, the refraction angles can be calculated.

Fig. 5. Number of critical angles derived from the conditions in (2) and (3)
when f = 10 GHz, εr1 = 30, εr2 = 1, μr1 = 1, μr2 = 1, σ1 = 1e −
6 S/m, σ2 = 6 S/m, and ρ1 > 0, while α1 varies from 0 to 1000 Np/m.

Based on the result of [20], γ2 and ξ2 can be calculated from the
following expressions when only one ξξ1 or ξγ1 exists:

γ2 =

⎧⎪⎪⎨
⎪⎪⎩

cos−1
(√

cos2 γ2

)
, forξ1 ≤ ξ

γ
1

180◦ − cos−1
(√

cos2 γ2

)
, forξ1 > ξ

γ
1

(21)

ξ2 =

⎧⎪⎪⎨
⎪⎪⎩

cos−1
(√

cos2 ξ2

)
, forξ1 ≤ ξ

ξ
1

180◦ − cos−1
(√

cos2 ξ2

)
, forξ1 > ξ

ξ
1

(22)

where cos2 γ2 and cos2 ξ2 can be computed using [20, eqs. (22)
and (23)]. Furthermore, when two ξγ1 or ξξ1 exist, γ2 and ξ2 follow:

γ2 =

⎧⎪⎪⎨
⎪⎪⎩

cos−1
(√

cos2 γ2

)
, for ξ1 ≤ ξ

γ
c1 or ξ1 ≥ ξ

γ
c2

180◦ − cos−1
(√

cos2 γ2

)
, for ξγc1 < ξ1 < ξ

γ
c2

(23)

ξ2 =

⎧⎪⎪⎨
⎪⎪⎩

cos−1
(√

cos2 ξ2

)
, for ξ1 ≤ ξ

ξ
c1orξ1 ≥ ξ

ξ
c2

180◦ − cos−1
(√

cos2 ξ2

)
, for ξξc1 < ξ1 < ξ

ξ
c2

(24)

where ξγ,ξc1 is smaller ξγ,ξ1 and ξγ,ξc2 is larger ξγ,ξ1 among two ξγ,ξ1 .
2) Case Where δ = 0: When δ = 0, i.e., the positive–negative

sign in (16) becomes meaningless and ξγ,ξ1 converges to (20), there
is a possibility that the refraction angle decreases right after the
critical angle as ξ1 increases so that (21) and (22) in determination
procedure 1 cannot be used. This phenomenon is the same as one
that is explained in the 2-D case refraction angle determination
procedure 2 in Section II-B. However, the exact condition that causes
this phenomenon for the 3-D case is difficult to deal with because,
unlike the 2-D case, the conditions that produce one or two critical
angles for the 3-D case are not discovered in this communication. It is
rather complicated and authors leave it for future work. Nonetheless,
an approximate refraction angle that is practically the same with the
exact value can be obtained by conducting determination procedure 1
after calculating ξγ,ξ1 using (16) with y0 = y0 − ε, where ε is a very
small arbitrary positive constant.
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Fig. 6. Validation of the proposed 2-D critical angle formulation: (a) γ2 and
ξ2 as ξ1 varies from 0.1◦ to 90◦ in increments of 0.1◦ , ρ1 < 0 or ρ1 > 0 and
α1 takes the values of 100, 400, 700, and 1000 Np/m; and (b) α1 as ξγ,ξ1
varies from 0◦ to 90◦ in increments of 0.1◦ for ρ1 > 0.

IV. VALIDATION

A. 2-D Case

Fig. 5 shows the number of critical angles when f =
10 GHz, εr1 = 30, εr2 = 1, μr1 = 1, μr2 = 1, σ1 = 1e −
6 S/m, σ2 = 6 S/m, and ρ1 > 0, as α1 is varied from 0 to
1000 Np/m. Notably, α01β01 � α02β02 due to the very low σ1.
When α1 < ∼391.28 Np/m, α01β01, α02β02, and α1β1 cos2(ρ1/2)
do not satisfy any condition in (2) and (3), leading to no critical
angle. On the other hand, when α1 > ∼391.28 Np/m, the condition
in (3) is satisfied, resulting in two critical angles.

Fig. 6 presents the validation of the proposed critical angle formu-
lation for the 2-D case when the frequency and electrical properties
are the same as that in Fig. 5. Fig. 6(a) shows γ2 and ξ2 when
ρ1 < 0 or ρ1 > 0, with α1 = 100, 400, 700, and 1000 Np/m, as ξ1
is varied from 0.1◦ to 90◦ in increments of 0.1◦, using the refraction
angle calculation procedure in Section II. (Here, the fundamental
calculation procedure of refraction angle is the same as that of [20],
[21], [22], [23], except the usage of (2) and (3) rather than (1) for
critical angle equation.)

Fig. 7. Validation of proposed 3-D critical angle formulation: (a) γ2 and
ξ2 as ξ1 varies from 0.1◦ to 90◦ in increments of 0.1◦ , and ρ1 and y0 take
the values 60◦ and 80◦ and sin10◦ and sin60◦, respectively, and (b) ρ1 as
ξ
γ,ξ
1 varies from 0◦ to 90◦ in increments of 0.1◦, and y0 takes the values of

sin10◦ and sin60◦ .

Fig. 6(b) shows α1 when ρ1 > 0, with the frequency and electrical
properties mentioned above, as ξγ,ξ1 is varied from 0◦ to 90◦ in

increments of 0.1◦ and both ξ
γ,ξ
c1 and ξ

γ,ξ
c2 in (3), i.e., proposed

formulation, are considered. In addition, in order to ensure the validity
of the proposed critical angle formulation, ξγ,ξ1 in (1), i.e., extant
formulation, is also shown. The vertical lines are drawn from points
where γ2 or ξ2 in Fig. 6(a) becomes 90◦ to the line in Fig. 6(b).
We can see that the values of α1 where the vertical lines and the line
in Fig. 6(b) intersect perfectly concur with α1 of each line in Fig. 6(a),
which validates the proposed critical angle formulation. Moreover,
two critical angles exist when ρ1 > 0 and α1 = 400 or 700 or 1000
Np/m, and no critical angle exists when ρ1 > 0 and α1 = 100 Np/m,
as expected from Fig. 5. Furthermore, as can be expected, no critical
angle exists when ρ1 < 0 because α01β01 � α02β02, so that any
conditions in (2) and (3) are not satisfied.

B. 3-D Case

Fig. 7 shows the validation of the proposed critical angle formu-
lation for the 3-D case when f = 10 GHz, εr1 = 8, εr2 = 1,
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μr1 = 4, μr2 = 1, σ1 = 5 S/m, and σ2 = 4 S/m, i.e., both
media are lossy. Fig. 7(a) shows γ2 and ξ2 when ρ1 = 60◦ or 80◦,
with y0 = sin 10◦ or sin 60◦, as ξ1 varies from 0.1◦ to 90◦ in
increments of 0.1◦, using the refraction angle calculation procedure
in Section III. Numbers in brackets next to lines represent ρ1 and y0
pair. Except for the case where ρ1 = 60◦ and y0 = sin 60◦ pair is
considered, i.e., δ = 0, both conditions that δ > 0 and δ < 0 were
considered for every pair. Fig. 7(b) shows ρ1 when y0 = sin 10◦
or sin 60◦, with the frequency and electrical properties mentioned
above, as ξγ,ξ1 varies from 0◦ to 90◦ in increments of 0.1◦ using (16)
considering both positive–negative signs. The vertical lines are drawn
from points where γ2 or ξ2 in Fig. 7(a) becomes 90◦ to the lines in
Fig. 7(b), which match y0 of each line in Fig. 7(a). As observed in
the figures, the values of ρ1 in Fig. 7(b) where the vertical lines and
lines in Fig. 7(b) intersect perfectly concur with ρ1 of each line in
Fig. 7(a), which validates the proposed formulation.

V. CONCLUSION

Novel critical angle equations essential for the determination of the
correct refraction angles of nonuniform plane waves were formulated.
For the 2-D case, a critical angle equation that is simpler than the
one in a previous study, and under the conditions that one or two
critical angles exist, is derived. The proposed 2-D critical angle
equation can be used more efficiently in areas requiring massive
computations, such as EM ray-tracing simulation. Furthermore, first,
a 3-D critical angle equation was formulated. Consequently, the
feasibility of utilization of the 3-D nonuniform plane wave refraction
in various areas was confirmed. It will contribute to improving the
accuracy of EM ray-tracing simulation and expanding EM theories
related to nonuniform plane waves.
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