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Abstract: This study proposes broadband direction (DOA) estimation through discrete Fourier transform
(DFT) extrapolation. We used DFT extrapolation in the lower band and extended the sampled data to
reduce the beam width in the spectral domain and improved the accuracy of the estimated DOA. The
sampled data with a length of 12 were extrapolated to 36 by the addition of 12-element virtual arrays to
12 real arrays on both sides. The average RMSEs of the estimated DOAs were measured throughout the
wide frequency band. To verify the validity of the proposed algorithm, we demonstrated that the RMSE
obtained from the broadband DOA estimation for multiple signals of interest (SOIs) was reduced in the
extrapolated array. It was demonstrated that the proposed algorithm can broaden the frequency band at
which a fixed number of array can estimate the DOA accurately.
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1. Introduction

Broadband direction-of-arrival (DOA) estimation has been actively studied to detect
and estimate the origin of a signal [1–9]. In the lower band, the beam width of the DOA
domain is widened [10], and the resolution is lowered accordingly, making it difficult to
accurately estimate the DOA. Therefore, in some cases, it may not be possible to accurately
estimate with the sampled signal alone. In a previous study [7], multiple signal classifica-
tion (MUSIC) was used for broadband DOA estimation, which is impractical in terms of
computational complexity.

We propose discrete Fourier transform (DFT) extrapolation to estimate the DOA in
a wideband, particularly in the lower bands. Previous research [11] proposed a high-
resolution algorithm called DFT extrapolation to estimate the frequency of the incoming
signal in the power spectrum from a limited-number dataset. By contrast, this study applies
an algorithm for broadband DOA estimation.

The remainder of this paper is organized as follows. Section 2 outlines DFT extrap-
olation and proposes a method for applying it to broadband DOA estimation. Section 3
describes the simulation conditions and results. In Section 4, we discuss the improvements
thus achieved.

2. DFT Extrapolation
2.1. Theoretical Background

DFT extrapolation is an iterative approach suitable for spectral estimation [11]. It is
performed using an algorithm capable of reconstructing an extended series of information
from sampled data. In this approach, Fourier transform estimation is performed via linear
inversion using original data and the minimization of a cost function [12].
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The following is an explanation of the aforementioned algorithm. Assume that a
length-N time series x0, x1, x2 . . . , xN−1 is sampled. Using zero padding, N sampled series
is converted into M spectral samples:

x = FX, (1)

where x ∈ RN and X ∈ CM denote the sampled information and the unknown DFT,
respectively, and N×M matrix F has elements Fn,k = (1/M)ei2πnk/N . To make the solution
unique, the l2 norm cost function is augmented with a selected regularizer Φ(X), and is
minimized. The augmented cost function J(X) is expressed as follows:

J(X) = Φ(X) + ‖x− FX‖2
2, (2)

where ‖.‖2
2 stands for l2 norm. We set the regularizer as a Cauchy distribution, which

requires iteration [13–15]. The Cauchy regularizer can be expressed as follows:

Φ(X) = ∑M−1
k=0 ln

(
1 +

XkX∗k
2σ2

X

)
, (3)

where σX is a parameter of the prior distribution of p(X|σX ). Let us assume that the data
are contaminated by noise having a distribution of N

(
0, σ2

n
)
. Equating the derivatives of

the augmented cost function to zero yields

X =
(
λQ−1 + FHF

)−1
FHx = QFH

(
λIN + FHQF

)−1
x = QFHb, (4)

where λ = σ2
n/σ2

X, IN is an N × N identity matrix, Q is an M×M diagonal matrix with
Qkk = 1 + XkX∗k /2σ2

X, and H is the Hermitian transpose. The algorithm starts with the
DFT of x, X(0), which generates matrix Q(0). We can obtain the updated DFT by computing
Equations (5) and (6), as follows:

b(µ−1) =
(
λIN + FHQ(µ−1)F

)−1
x (5)

X(µ) = Q(µ−1)FHb(µ−1), (6)

where µ is the number of iterations. The iteration process is stopped when the (27) of [11]
is satisfied.

2.2. Application for Broadband DOA Estimation

There are two differences between the method proposed in [11] and the ones used
in this study. The algorithm used in this study estimates the DOA using the sampled
signal. In other words, the sampled signal is a spatial series, not a time series, and the
spectral domain is taken as the DOA domain in this study. The problem, however, is that
the number of spatial series sampled with an antenna array is extremely small compared to
the length of the sampled time series; the former is at best 30, but the latter is usually of
the order of 102. Thus, the effect of noise is more significant when the number of samples
in the series becomes smaller. Additionally, if λ is too large or the tolerance is too small
in the iterative process with the Cauchy regularizer, the extrapolated signal becomes zero
because the sparsity increases excessively due to the excessive iteration. We addressed this
difference by heuristically adjusting the hyperparameters in the algorithm.

3. Simulation Results
3.1. Simulation Conditions

An antenna array of 12 elements was designed at 3 GHz, and the uniform interval
between elements was set to be half wavelength. The 12-element antenna array was
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virtually extended to 36 elements using DFT extrapolation. Twelve virtual elements were
added to the left and right sides of the real array. The DOA was randomly chosen, and the
number of sources was three, four, or five. We assumed that the signal from the DOA was
sampled under 10 dB and 20 dB SNR, where the noise followed a Gaussian distribution,
which was calculated using the average of the absolute values of the sampled signal. Given
that the SNR of the sampled signal can be improved with a multi-snapshot when it comes
to a lower SNR [16], the simulation was performed only under the aforementioned two
SNRs. The number of spectral samples M was fixed at 1024 to achieve a high resolution
of the DOA estimation results from each array. The frequency band observed was from
500 MHz to 3 GHz with a step of 0.1 GHz. The hyperparameter λ and tolerance were
heuristically set to 0.003 and 0.01, respectively, throughout the frequencies.

To observe the improvement of the DFT extrapolation, we compared the estimation
of arrays with virtual arrays with the estimation results using the real array before the
extension and the real array with the same number of elements as the virtual array: (1) a
real array with 12 elements, (2) a 12-element real array extrapolated to 36 elements, and (3)
a 36-elements real array. Assuming that we already know the number of DOA, the root
mean square error (RMSE) value was used as a metric to evaluate the DOA estimation
result, which was obtained by averaging 1000-times repeated results at each frequency [17].
If the estimated DOA number was less than the real DOA, we set the RMSE to 45◦. To
determine the correlation between the estimated DOA number and RMSE, we plotted the
average number of peaks greater than −15 dB in the normalized pattern in the spectral
domain for each frequency.

3.2. Results

Figure 1a,b represent the DOA RMSEs measured at 10 dB and 20 dB SNR, and the
number of peaks in the spectral domain, respectively, when the three randomly chosen
DOAs were −31, 10, and 38◦. In Figure 1a, at 10 dB SNR, the RMSEs of the 36-element
real array are all within 5◦. At relatively high frequencies, the RMSE of the 12-element
real array was similar to that of the extrapolated array. However, at lower frequencies, a
difference was observed in this regard. The RMSE of the 12-element real array exceeded 5◦

below 1.6 GHz, with a significant increase in the lower frequencies. When the real array
was extrapolated, the RMSE exceeded 5◦ at 1.2 GHz but did not increase rapidly, unlike
that of the 12-element real array. The reason for the rapid increase in the RMSE, as in
the 12-element real arrays, was found to be highly related to the number of peaks. If the
number of peaks was three or less, the DOA could not be estimated, and the RMSE will
increase rapidly to 45◦, as described in Section 3.1. Figure 1a shows a drastic change in
the RMSE values at frequencies where the estimated number of peaks is less than three.
This also occurred at an SNR of 20 dB. In Figure 1b, the RMSE of the 36-element real array
remains below 5◦ above 600 MHz, sharp changes in the RMSE are observed at 1.5 GHz for
the 12-element real array, and at 0.9 GHz for the extrapolated array. This is also related
to the number of peaks. This indicates that expanding the virtual array through DFT
extrapolation expands the measurable frequency band.

Figure 2a,b represent the DOA RMSEs measured at 10 dB and 20 dB SNR and the
number of peaks in the spectral domain, respectively, when the four randomly chosen DOA
are −36, −8, 23, and 49◦. These results are similar to those shown in Figure 1. In Figure 2a,
the RMSE of the 36-element real array remains below 5 degrees above 700 MHz, and sharp
changes in the RMSE are seen at 2.1 GHz for the 12-element real array, and at 1.1 GHz for
the extrapolated array. In Figure 2b, the RMSE of the 36-element real array remains below
5 degrees above 500 MHz, and drastic changes in the RMSE are observed at 2.1 GHz for the
12-element real array, and at 1.0 GHz for the extrapolated array. It can be observed that
the changes are related to the number of peaks. Figure 2 also indicates that measurable
frequency band for the four DOAs was expanded by DFT extrapolation.
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Figure 3a,b represent the DOA RMSEs measured at 10 dB and 20 dB SNR and the
number of peaks in the spectral domain, respectively, when the five randomly chosen DOA
are−68, −40, −14, 27, and 53◦. In Figure 3a, the RMSE of the 36-element real array remains
below 5 degrees above 1 GHz, DOAs are able to detected only at 3 GHz for the 12-element
real array, and above 2.4 GHz for the extrapolated array. In Figure 3b, the RMSE of the
36-element real array remains below 5 degrees above 1 GHz, DOAs are able to be estimated
only at 3 GHz for the 12-element real array, and above 1.8 GHz for the extrapolated array.
Measurable frequency band for the five DOAs was expanded by DFT extrapolation as well.

The number of peaks fluctuated throughout the frequency range, even at higher
frequencies. This is because the noise affects the beam patterns in the spectral domain, and
peaks at an angle that is not the DOA.
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4. Discussion

This study proposes a broadband DOA estimation method exploiting DFT extrapola-
tion. We applied this method to the lower band to reduce the beam width in the spectral
domain and improved the high-resolution property and accuracy of the estimated DOA.
The received signal from randomly chosen DOAs was extended to the signal detected
using the virtual 36-element array. To verify the effectiveness of the proposed algorithm,
we compared the RMSEs of the DOA estimated from a 12-element array, a 12-element array
extrapolated to 36-element array, and a 36-element real array at frequencies ranging from
500 MHz to 3 GHz. It was demonstrated that DFT extrapolation improved the estimation
accuracy by lowering the RMSE throughout the frequency band and enabled the estimation
of the DOA in the lower frequency band, which will broaden the frequency band at which
an array with a relatively small number of elements can accurately estimate the DOA of a
small number of sources.
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