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Abstract

Using wings on small fl ying robots for embedded antennas can provide a fl exible and lightweight solution for 
communications from these platforms. The fabrication of ultra-lightweight, high-strength  polyimide nanopaper fabric 
from which the wing is built is outlined. Such materials can be used to build multilayer, lightweight electronics in a 
variety of other situations. After outlining the fabrication of the nanopaper, designs for two different antenna-embedding 
techniques are presented. First, a simple embedded wire antenna is fabricated and measured, followed by a more-
complex printed antenna design. Each process is outlined and trade-offs are presented. Both designs worked well, and 
can be adapted for use in other similar scenarios. 
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1. Introduction

Flying robots are becoming important for military and 
civilian uses [1, 2]. Due to the high energy cost of propul-

sion, making these platforms very lightweight is a key design 
goal. For palm-sized versions, fl apping wings are one design 
feature that can trade off speed for enhanced endurance. A 
project funded by the Army aimed to design the next-genera tion 
reconnaissance robot that used fl apping wings [3-5]. In order 
to provide reliable communications with such robots, careful 
design of embedded antennas was required.

 This paper explores the idea of embedding antennas 
in the wings of such a robot. Using the wings provides two 

main advantages over using the robot’s body: (1) a large area 
to work with, which enables high-bandwidth antennas; and (2) 
separation from the other electronics of the platform, which can 
compromise the antenna’s performance. 

 Flexible antennas have a wide spectrum of applications 
in wireless communication, where the antennas are integrated 
with conformal electronics platforms or objects [6-9]. Some of 
these applications involve using a paper substrate with human-
wearable electronics as the main application area, which is quite 
different from the current application. Recently, a novel fl exible 
antenna integrated with a fl exible solar-cell array, suitable for 
use as a lightweight multifunctional wing of a fl apping robot, 
was reported [10].
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 The wings, made of ultra-thin materials incorporating the 
embedded antenna, must be light and strong enough to provide 
lift during fl apping without tearing. In one project dealing with 
insect fl ight [11], the wing loading was found to be of the order 
of 1 2N/m . Other projects have used wings with embed ded 
actuators [12, 13] to maximize lift and reduce drag. The 
antenna’s structure must also provide minimal loading on the 
wings, in order to avoid degrading the effi ciency of the fl ap ping 
actuation. The super light weight and tensile characteris tics of 
electro-spun Polyimide nanopaper are very promising for such 
stringent needs.

  Hence, the wings used in this project were fabricated 
using a composite of extremely low-density – yet high 
strength – polyimide nanopaper fabric [14], plus a very thin 
layer of fi berglass. The remainder of this paper explains how 
the polyimide nanopaper was fabricated, and then the design, 
fabrication, and measurements for two different embedded 
antennas.

2. Nanopaper Wings

2.1	Background

 Nanopaper is made using a technology similar to that used 
for making paper. The cellulose nanofi bers used in mak ing 
paper are 5 nm to 20 nm in diameter, and about 5 µm in length, 
resulting in a large aspect ratio (about 250). When dis tributed 
in random orientations, these fi bers offer isotropic properties, 
as well as superior tensile stiffness and strength. Nanopaper 
processes can be classifi ed into two types: fi ltra tion of nanofi ber 
suspensions followed by air drying [15, 16], and hot pressing 
[17-19] of the wet gel. The fi bers are held in place by capillary 
tension and/or hydrogen bonding. These nanopapers have 
been shown to have a combination of high elastic modulus, 
tensile strength, toughness, optical transpar ency, low thermal 
expansion, and excellent oxygen barrier properties. 

 Electro-spinning of polymer solutions enables the produc-
tion of much longer fi bers [20] by applying a high volt age 
between the nozzle and the drum [21, 22, 14]. This elec tric fi eld 
guides and pulls the fi ber between the drum and the nozzle. The 
properties of the nanofi ber can be controlled by the choice of 
the polymer and the parameters of the electro-spinning process. 
Electro-spun fabric is obtained in layers of non-woven fi bers, 
and its bulk tensile properties are poor. In [14], Lingaiah et 
al. showed how to fuse the nanofi bers at crossover points to 
make strong nanopaper. This was demon strated with Nylon-66 
nanofi bers, and later extended to poly imide nanopapers [23] for 
high-temperature applications.

 Electro-spun polyimide nanopaper has a broad range of 
applications requiring super lightweight structural fl exibility 
and tolerance, due to the increased demand for low-mass, low-
power, and fl exible electronic devices [24-26].

2.2 Fabrication

 Fabrication of polyimide nanopaper involves three major 
steps: solution preparation, spinning, and fusing. The solution 
is prepared with 20% by weight polyimide, dissolved in 99% 
N,N-Dimethyl formamide (DMF). This solution is then 
squeezed through a syringe (with a needle diameter of 0.36 mm) 
to produce a thin fi ber, as shown in Figure 1. There is a rotating 
cylinder on which the fi bers are deposited. A 30,000-volt 
potential difference between the drum and the nozzle is used to 
pull the solution into a thin thread, with a diameter of between 
280 nm and 510 nm. This thread is then wound onto the rotating 
drum. During this process, the syringe is moved slowly 
lengthwise along an axis parallel to the axis of the drum, back 
and forth, in order to uniformly coat the cylinder. After two 
hours, the density of fi bers on the drum is about 4.5 2g/m . At 
this stage, the nanofi bers are loosely packed, and must be 
compacted and fused at crossover points to make nanopaper 
with the required stiffness and strength properties.

 Fusing the nanopaper must be carefully done to avoid 
stress concentrations that will compromise the strength of the 
resulting paper. The paper is hence sealed in a vacuum bag, 
which is then evacuated to a pressure of 133 Pa, much less 
than atmospheric pressure. Heat is applied at a temperature just 
below the glass-transition temperature of the fi bers, in this case, 
330° C. After three minutes, the nanofi bers have sof tened and 
fused (see Figure 2).

 The measured elastic modulus of the nanopaper was 
1 GPa, with a strength of 65 MPa, which made it strong enough 
to be used for the wings in a robotic fl apper. This material was 
also attractive for wings due to its low density (4.5 2g/m ) and 
hence low overall weight for large wings.

3. Wire Antenna

3.1 Design

 To start, we decided to use the simplest antenna technol-
ogy: a curved wire dipole. To accomplish this, we chose a 
conductive thread made from steel and nylon, as a fi rst try at 
using a material that was both conductive and wear-resistant. 
The mechanical drawing (Figure 3) shows the required spiral 
shape that it was to have had when embedded in the fabric, to 
provide an antenna with a center frequency of 1.3 GHz.

3.2 Fabrication

 To enhance the strength, it was initially decided to embed 
the antenna between multiple nanopaper layers. The following 
process was followed to embed the metallic thread in the 
nanopaper layers (see Figure 4): 

Figure 1a. A diagram of the major aspects of the X-trav erse 
electro-spinning setup. 

Figure 1b. A photo of the actual X-traverse electro-spin ning 
setup.

Figure 2. The thermal fusing of nanopaper at crossover 
points. The fusing junctions are circled in red. The fi ber 
diameters ranged from 45 nm to 160 nm.

Figure 3. The schematic of the wire antenna as it would 
appear in a wing. The red line indicates the shape for the 
metal thread. The gray area is the intended wing shape.

Figure 4a. The process for embedding the wire antenna 
between layers of nanopaper: a top view of a generic wire 
antenna as it would be embedded between paper layers.

Figure 4b. A side view of the assembled layered structure, 
showing the Nylon­66 nanopaper, the glass­fi ber rein­
forcement layers, and the antenna wire layer.
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 The wings, made of ultra-thin materials incorporating the 
embedded antenna, must be light and strong enough to provide 
lift during fl apping without tearing. In one project dealing with 
insect fl ight [11], the wing loading was found to be of the order 
of 1 2N/m . Other projects have used wings with embed ded 
actuators [12, 13] to maximize lift and reduce drag. The 
antenna’s structure must also provide minimal loading on the 
wings, in order to avoid degrading the effi ciency of the fl ap ping 
actuation. The super light weight and tensile characteris tics of 
electro-spun Polyimide nanopaper are very promising for such 
stringent needs.

  Hence, the wings used in this project were fabricated 
using a composite of extremely low-density – yet high 
strength – polyimide nanopaper fabric [14], plus a very thin 
layer of fi berglass. The remainder of this paper explains how 
the polyimide nanopaper was fabricated, and then the design, 
fabrication, and measurements for two different embedded 
antennas.

2. Nanopaper Wings

2.1	Background

 Nanopaper is made using a technology similar to that used 
for making paper. The cellulose nanofi bers used in mak ing 
paper are 5 nm to 20 nm in diameter, and about 5 µm in length, 
resulting in a large aspect ratio (about 250). When dis tributed 
in random orientations, these fi bers offer isotropic properties, 
as well as superior tensile stiffness and strength. Nanopaper 
processes can be classifi ed into two types: fi ltra tion of nanofi ber 
suspensions followed by air drying [15, 16], and hot pressing 
[17-19] of the wet gel. The fi bers are held in place by capillary 
tension and/or hydrogen bonding. These nanopapers have 
been shown to have a combination of high elastic modulus, 
tensile strength, toughness, optical transpar ency, low thermal 
expansion, and excellent oxygen barrier properties. 

 Electro-spinning of polymer solutions enables the produc-
tion of much longer fi bers [20] by applying a high volt age 
between the nozzle and the drum [21, 22, 14]. This elec tric fi eld 
guides and pulls the fi ber between the drum and the nozzle. The 
properties of the nanofi ber can be controlled by the choice of 
the polymer and the parameters of the electro-spinning process. 
Electro-spun fabric is obtained in layers of non-woven fi bers, 
and its bulk tensile properties are poor. In [14], Lingaiah et 
al. showed how to fuse the nanofi bers at crossover points to 
make strong nanopaper. This was demon strated with Nylon-66 
nanofi bers, and later extended to poly imide nanopapers [23] for 
high-temperature applications.

 Electro-spun polyimide nanopaper has a broad range of 
applications requiring super lightweight structural fl exibility 
and tolerance, due to the increased demand for low-mass, low-
power, and fl exible electronic devices [24-26].

2.2 Fabrication

 Fabrication of polyimide nanopaper involves three major 
steps: solution preparation, spinning, and fusing. The solution 
is prepared with 20% by weight polyimide, dissolved in 99% 
N,N-Dimethyl formamide (DMF). This solution is then 
squeezed through a syringe (with a needle diameter of 0.36 mm) 
to produce a thin fi ber, as shown in Figure 1. There is a rotating 
cylinder on which the fi bers are deposited. A 30,000-volt 
potential difference between the drum and the nozzle is used to 
pull the solution into a thin thread, with a diameter of between 
280 nm and 510 nm. This thread is then wound onto the rotating 
drum. During this process, the syringe is moved slowly 
lengthwise along an axis parallel to the axis of the drum, back 
and forth, in order to uniformly coat the cylinder. After two 
hours, the density of fi bers on the drum is about 4.5 2g/m . At 
this stage, the nanofi bers are loosely packed, and must be 
compacted and fused at crossover points to make nanopaper 
with the required stiffness and strength properties.

 Fusing the nanopaper must be carefully done to avoid 
stress concentrations that will compromise the strength of the 
resulting paper. The paper is hence sealed in a vacuum bag, 
which is then evacuated to a pressure of 133 Pa, much less 
than atmospheric pressure. Heat is applied at a temperature just 
below the glass-transition temperature of the fi bers, in this case, 
330° C. After three minutes, the nanofi bers have sof tened and 
fused (see Figure 2).

 The measured elastic modulus of the nanopaper was 
1 GPa, with a strength of 65 MPa, which made it strong enough 
to be used for the wings in a robotic fl apper. This material was 
also attractive for wings due to its low density (4.5 2g/m ) and 
hence low overall weight for large wings.

3. Wire Antenna

3.1 Design

 To start, we decided to use the simplest antenna technol-
ogy: a curved wire dipole. To accomplish this, we chose a 
conductive thread made from steel and nylon, as a fi rst try at 
using a material that was both conductive and wear-resistant. 
The mechanical drawing (Figure 3) shows the required spiral 
shape that it was to have had when embedded in the fabric, to 
provide an antenna with a center frequency of 1.3 GHz.

3.2 Fabrication

 To enhance the strength, it was initially decided to embed 
the antenna between multiple nanopaper layers. The following 
process was followed to embed the metallic thread in the 
nanopaper layers (see Figure 4): 

Figure 1a. A diagram of the major aspects of the X-trav erse 
electro-spinning setup. 

Figure 1b. A photo of the actual X-traverse electro-spin ning 
setup.

Figure 2. The thermal fusing of nanopaper at crossover 
points. The fusing junctions are circled in red. The fi ber 
diameters ranged from 45 nm to 160 nm.

Figure 3. The schematic of the wire antenna as it would 
appear in a wing. The red line indicates the shape for the 
metal thread. The gray area is the intended wing shape.

Figure 4a. The process for embedding the wire antenna 
between layers of nanopaper: a top view of a generic wire 
antenna as it would be embedded between paper layers.

Figure 4b. A side view of the assembled layered structure, 
showing the Nylon­66 nanopaper, the glass­fi ber rein­
forcement layers, and the antenna wire layer.
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1. Each nanopaper layer was fabricated separately.

2. The antenna was formed to an approximate desired 
shape, and carefully aligned with the other paper 
layers.

3. The assembly was placed in a vacuum bag.

4. Once the bag was depressurized, it was then heated 
at 200° C for three minutes.

5. The wing with embedded antenna was then removed 
from the bag, with all layers bonded to each other.

 The successfully embedded antenna/wing structure is 
shown in Figure 5, with the spiral antenna wire just visible 
through the translucent Nylon-66 paper layers.

3.3 Measurements

 The structure of the nanopaper with the embedded 
antenna is very fl exible and conformable, and so could not 
stand on its own. For measuring the antenna, we fi rst attached 
it to a Styrofoam backing. We then placed the antenna and 
Styrofoam over a ground plane, to form a monopole antenna. 
This confi guration was used in order to simulate the opera tional 
scenario where the fl apping robot had two wings, each with an 
antenna, facing each other. The ground plane was used to form 
the image, which simulated the existence of the antenna in the 
“other” wing. This measurement setup is shown in Figure 6.

 The antenna’s response was then measured using a vector 
network analyzer to determine the operating frequency. The 
result of the 11S  measurement is shown in Figure 7. The meas-
ured antenna frequency response showed a very good impedance 
match at the desired frequency of 1.3 GHz. Also shown is the 
harmonic response at 2.6 GHz.

3.4 Lessons

 The remarkably straightforward process for embedding 
the wire antenna in the nanopaper/fi berglass composite struc-
ture was easy and worked well. However, the antenna wire did 
not easily hold its shape during the process, and so the result-
ing antenna frequency could not be easily set. Future antennas 
of this type will require a jig or similar device for accurately 
forming the wire antenna’s shape before starting the embed ding 
process. The multi-layer approach used here with nanopaper 
and fi berglass sheets also unnecessarily increased the wing’s 
mass. As an alternative, a more-accurate fabrica tion process 
was considered next. In this process, we explored the idea of 
using lithography to print the antenna directly on the nanopaper. 
This is discussed in the following section.

Figure 6. The wire antenna is shown mounted vertically 
with a Styrofoam backer, placed on top of the copper ground 
plane. The dimensions of the ground plane were 12 cm by 
12 cm.

Figure 5. A top view photo of the wire antenna embedded 
in Nylon­66 electro­spun fabric reinforced with glass fi bers. 
The light area is the paper, with a darker spiral pattern 
where the antenna wire shows through the trans lucent 
paper.

Figure 7. The measured antenna frequency response, 
which showed a very good impedance match at the desired 
frequency of 1.3 GHz. Also shown is the harmonic response 
at 2.6 GHz.

4. Printed Folded Dipole

 This section presents the design, fabrication, and testing of 
a conformal UHF antenna on a single layer of nanopaper using 
a lithography method. Due to the limited size of the wing, an 
antenna operating at 400 MHz had to be confi ned to an area of 
9 cm × 5.3 cm. To evaluate the performance of the proposed 
design, a monopole prototype over a ground plane was tested. 
The ground plane was used to simulate the sym metric geometry 
when two wings were used, forming a dipole antenna.

4.1 Design

 The large size of conventional planar antennas confl icts 
with the limited space on the wing of the fl apping robotic plat-
forms. In this situation, a simple approach to antenna design 
can be the utilization of a quarter-wavelength monopole 
antenna. Bending the antenna appropriately to be fi t in the wing 
can achieve the required resonant frequency. However, it was 
found that the bent-antenna topology aggravates the impedance 
matching to a 50-ohm feed. Figure 8 shows straight and bent 
quarter-wavelength monopole antennas (denoted by case a, and 
cases b and c, respectively). Compari son among the three cases 
showed the effects of the bent topology. The antennas were 
designed to operate at the same frequency of 390 MHz, and 
their input impedance ( 11Z ) and radiation patterns were 
simulated using Ansoft HFSS 13.0. Figure 9 shows the real and 
imaginary parts of the input impedance ( 11Z ) of the antennas 
corresponding to cases a, b, and c. The change in the real part of 
the impedance from 36 ohms to 9 ohms at the design frequency 
made impedance matching to a 50-ohm feed a challenge.

 The decrease in the input impedance could be compen-
sated for by considering a folded-antenna structure. This folding 
technique utilized the well-known fact that the input impedance 
of the 2λ  folded dipole antenna is four times higher than that 
of the 2λ  dipole antenna. Figure 10 shows the miniaturized 
folded monopole antenna, where one end of the antenna was 
shorted to ground. Tailoring the metallic trace fi t into the wing’s 
shape resulted in the design shown in Fig ure 10. Figure 11 
shows the real and imaginary parts of the input impedance of 
the proposed antenna. As expected, the value of the real part at 
390 MHz was increased to around 50 ohms, providing the 
capability of impedance matching to the 50-ohm feed. It was 
noted that this proposed antenna topology resulted in positioning 
a shunt-resonant frequency closer to the original series-resonant 
frequency. This caused the sharper slope of the 11Z  of the 
proposed antenna around the series-resonant frequency. The 
impedance matching employing the proposed folded topology 
therefore came at the expense of decreased antenna bandwidth 
related to the slope of 11Z . Figure 12 shows the simulated 11S  
of the proposed antenna, and for cases a, b, and c. As discussed 
above, while the proposed antenna showed signifi cant 
enhancement in impedance matching compared to cases b and 
c, the band width of the proposed antenna was narrower than 
that of the straight quarter-wavelength monopole antenna (case 
a).

Figure 9a. The real part of the simulated input impedance 
of the antennas corresponding to designs a, b, and c in 
Figure 8.

Figure 8. The design evolution of the printed antenna: (a) 
straight and (b, c) folded quarter-wavelength monopole 
antennas.

Figure 9b. The imaginary part of the simulated input 
impedance of the antennas corresponding to designs a, b, 
and c in Figure 8.
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1. Each nanopaper layer was fabricated separately.

2. The antenna was formed to an approximate desired 
shape, and carefully aligned with the other paper 
layers.

3. The assembly was placed in a vacuum bag.

4. Once the bag was depressurized, it was then heated 
at 200° C for three minutes.

5. The wing with embedded antenna was then removed 
from the bag, with all layers bonded to each other.

 The successfully embedded antenna/wing structure is 
shown in Figure 5, with the spiral antenna wire just visible 
through the translucent Nylon-66 paper layers.

3.3 Measurements

 The structure of the nanopaper with the embedded 
antenna is very fl exible and conformable, and so could not 
stand on its own. For measuring the antenna, we fi rst attached 
it to a Styrofoam backing. We then placed the antenna and 
Styrofoam over a ground plane, to form a monopole antenna. 
This confi guration was used in order to simulate the opera tional 
scenario where the fl apping robot had two wings, each with an 
antenna, facing each other. The ground plane was used to form 
the image, which simulated the existence of the antenna in the 
“other” wing. This measurement setup is shown in Figure 6.

 The antenna’s response was then measured using a vector 
network analyzer to determine the operating frequency. The 
result of the 11S  measurement is shown in Figure 7. The meas-
ured antenna frequency response showed a very good impedance 
match at the desired frequency of 1.3 GHz. Also shown is the 
harmonic response at 2.6 GHz.

3.4 Lessons

 The remarkably straightforward process for embedding 
the wire antenna in the nanopaper/fi berglass composite struc-
ture was easy and worked well. However, the antenna wire did 
not easily hold its shape during the process, and so the result-
ing antenna frequency could not be easily set. Future antennas 
of this type will require a jig or similar device for accurately 
forming the wire antenna’s shape before starting the embed ding 
process. The multi-layer approach used here with nanopaper 
and fi berglass sheets also unnecessarily increased the wing’s 
mass. As an alternative, a more-accurate fabrica tion process 
was considered next. In this process, we explored the idea of 
using lithography to print the antenna directly on the nanopaper. 
This is discussed in the following section.

Figure 6. The wire antenna is shown mounted vertically 
with a Styrofoam backer, placed on top of the copper ground 
plane. The dimensions of the ground plane were 12 cm by 
12 cm.

Figure 5. A top view photo of the wire antenna embedded 
in Nylon­66 electro­spun fabric reinforced with glass fi bers. 
The light area is the paper, with a darker spiral pattern 
where the antenna wire shows through the trans lucent 
paper.

Figure 7. The measured antenna frequency response, 
which showed a very good impedance match at the desired 
frequency of 1.3 GHz. Also shown is the harmonic response 
at 2.6 GHz.

4. Printed Folded Dipole

 This section presents the design, fabrication, and testing of 
a conformal UHF antenna on a single layer of nanopaper using 
a lithography method. Due to the limited size of the wing, an 
antenna operating at 400 MHz had to be confi ned to an area of 
9 cm × 5.3 cm. To evaluate the performance of the proposed 
design, a monopole prototype over a ground plane was tested. 
The ground plane was used to simulate the sym metric geometry 
when two wings were used, forming a dipole antenna.

4.1 Design

 The large size of conventional planar antennas confl icts 
with the limited space on the wing of the fl apping robotic plat-
forms. In this situation, a simple approach to antenna design 
can be the utilization of a quarter-wavelength monopole 
antenna. Bending the antenna appropriately to be fi t in the wing 
can achieve the required resonant frequency. However, it was 
found that the bent-antenna topology aggravates the impedance 
matching to a 50-ohm feed. Figure 8 shows straight and bent 
quarter-wavelength monopole antennas (denoted by case a, and 
cases b and c, respectively). Compari son among the three cases 
showed the effects of the bent topology. The antennas were 
designed to operate at the same frequency of 390 MHz, and 
their input impedance ( 11Z ) and radiation patterns were 
simulated using Ansoft HFSS 13.0. Figure 9 shows the real and 
imaginary parts of the input impedance ( 11Z ) of the antennas 
corresponding to cases a, b, and c. The change in the real part of 
the impedance from 36 ohms to 9 ohms at the design frequency 
made impedance matching to a 50-ohm feed a challenge.

 The decrease in the input impedance could be compen-
sated for by considering a folded-antenna structure. This folding 
technique utilized the well-known fact that the input impedance 
of the 2λ  folded dipole antenna is four times higher than that 
of the 2λ  dipole antenna. Figure 10 shows the miniaturized 
folded monopole antenna, where one end of the antenna was 
shorted to ground. Tailoring the metallic trace fi t into the wing’s 
shape resulted in the design shown in Fig ure 10. Figure 11 
shows the real and imaginary parts of the input impedance of 
the proposed antenna. As expected, the value of the real part at 
390 MHz was increased to around 50 ohms, providing the 
capability of impedance matching to the 50-ohm feed. It was 
noted that this proposed antenna topology resulted in positioning 
a shunt-resonant frequency closer to the original series-resonant 
frequency. This caused the sharper slope of the 11Z  of the 
proposed antenna around the series-resonant frequency. The 
impedance matching employing the proposed folded topology 
therefore came at the expense of decreased antenna bandwidth 
related to the slope of 11Z . Figure 12 shows the simulated 11S  
of the proposed antenna, and for cases a, b, and c. As discussed 
above, while the proposed antenna showed signifi cant 
enhancement in impedance matching compared to cases b and 
c, the band width of the proposed antenna was narrower than 
that of the straight quarter-wavelength monopole antenna (case 
a).

Figure 9a. The real part of the simulated input impedance 
of the antennas corresponding to designs a, b, and c in 
Figure 8.

Figure 8. The design evolution of the printed antenna: (a) 
straight and (b, c) folded quarter-wavelength monopole 
antennas.

Figure 9b. The imaginary part of the simulated input 
impedance of the antennas corresponding to designs a, b, 
and c in Figure 8.
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4.2 Fabrication

 In order to deposit a metal layer for the antenna geometry 
on the nanopaper, three common fabrication methods (liftoff, 
etch-back and shadow mask) were considered. Figure 13 dia-
grams the three fabrication methods. In the liftoff method, 
photo-resist (PR) was fi rst deposited on the nanopaper, and 
exposed to light with a proper mask. Photo-resist correspond-
ing to the antenna pattern was then removed. This process was 
fi nished by depositing metal on the entire surface and then 
dissolving the rest of the photo-resist, which was covered with 
metal. The metal over photo-resist was also removed when 
the photo-resist was dissolved, and only the areas where there 
was no photo-resist would be covered by metal. Alternatively, 
in the etch-back method, a metal layer was fi rst deposited on 
the nanopaper, and then the metal layer was covered by photo-
resist. After exposure to light with a proper mask, photo-resist 
on the area not covering the antenna pattern was dissolved. 
Finally, the metal not covered by the remaining photo-resist 
was etched.

 Applying the aforementioned two methods for the antenna 
on the nanopaper, two problems caused by the use of chemical 
solutions were found:

1. Once the nanofabric got wet with the solutions, the 
adhesion between the metal layer and nanofabric 
was lost.

2. During the chemical process, if the nanofabric was 
combined with liquid-type photo-resists, the photo-
resists could not be completely removed with the 
developer. 

Because of these problems, using a shadow mask which did 
not require the use of chemical solutions was the only practi cal 
method that could be used. Using a shadow mask and sputtering 
system, an aluminized UHF folded-monopole antenna could 

Figure 11b. The imaginary part of the simulated input 
impedance of the proposed miniaturized folded monopole 
antenna in Figure 10.

Figure 10. The topology of the proposed miniaturized folded 
monopole antenna.

Figure 11a. The real part of the simulated input imped ance 
of the proposed miniaturized folded monopole antenna in 
Figure 10.

Figure 12. The simulated 11S  of the proposed antenna com-
pared with cases a, b, and c.

be fabricated without damaging the nanopaper. We chose 
aluminum because of its high conductivity and low specifi c 
mass.

 In order to obtain high-conductivity metal traces, the 
metal thickness should be about three times the skin depth. For 
aluminum at 390 MHz, this resulted in a required metal thick-
ness of about 15 µm. Figure 14a shows a photo of the fabri cated 
antenna, mounted on a Styrofoam block. The fi nal weight of 
the nanopaper and antenna was 0.18 g. We also per formed a 
fl exibility test on the fabricated antenna, repeatedly forming it 
around a circular curve with a half-inch radius of curvature (see 
Figure 14b). This was to simulate the effects due to fl apping. No 
cracking of the metal traces was observed, nor was tearing of 
the paper. The measurements, presented next, were done after 
the fl exibility tests, in order to show the expected performance 
after many fl apping cycles.

4.3 Measurements

Figures 15 and 16 show the measured 11S  and radiation pat-
terns of the fabricated nanopaper antenna, compared to the 

Figure 13. The fabrication of the printed antenna on the 
nanopaper substrate.

Figure 14a. The nanopaper antenna, supported by Styro-
foam for measurements.

Figure 14b. A demonstration of the nanopaper antenna’s 
fl exibility.

Figure 15. The measured 11S  of the proposed antenna com-
pared with the simulation.
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4.2 Fabrication

 In order to deposit a metal layer for the antenna geometry 
on the nanopaper, three common fabrication methods (liftoff, 
etch-back and shadow mask) were considered. Figure 13 dia-
grams the three fabrication methods. In the liftoff method, 
photo-resist (PR) was fi rst deposited on the nanopaper, and 
exposed to light with a proper mask. Photo-resist correspond-
ing to the antenna pattern was then removed. This process was 
fi nished by depositing metal on the entire surface and then 
dissolving the rest of the photo-resist, which was covered with 
metal. The metal over photo-resist was also removed when 
the photo-resist was dissolved, and only the areas where there 
was no photo-resist would be covered by metal. Alternatively, 
in the etch-back method, a metal layer was fi rst deposited on 
the nanopaper, and then the metal layer was covered by photo-
resist. After exposure to light with a proper mask, photo-resist 
on the area not covering the antenna pattern was dissolved. 
Finally, the metal not covered by the remaining photo-resist 
was etched.

 Applying the aforementioned two methods for the antenna 
on the nanopaper, two problems caused by the use of chemical 
solutions were found:

1. Once the nanofabric got wet with the solutions, the 
adhesion between the metal layer and nanofabric 
was lost.

2. During the chemical process, if the nanofabric was 
combined with liquid-type photo-resists, the photo-
resists could not be completely removed with the 
developer. 

Because of these problems, using a shadow mask which did 
not require the use of chemical solutions was the only practi cal 
method that could be used. Using a shadow mask and sputtering 
system, an aluminized UHF folded-monopole antenna could 

Figure 11b. The imaginary part of the simulated input 
impedance of the proposed miniaturized folded monopole 
antenna in Figure 10.

Figure 10. The topology of the proposed miniaturized folded 
monopole antenna.

Figure 11a. The real part of the simulated input imped ance 
of the proposed miniaturized folded monopole antenna in 
Figure 10.

Figure 12. The simulated 11S  of the proposed antenna com-
pared with cases a, b, and c.

be fabricated without damaging the nanopaper. We chose 
aluminum because of its high conductivity and low specifi c 
mass.

 In order to obtain high-conductivity metal traces, the 
metal thickness should be about three times the skin depth. For 
aluminum at 390 MHz, this resulted in a required metal thick-
ness of about 15 µm. Figure 14a shows a photo of the fabri cated 
antenna, mounted on a Styrofoam block. The fi nal weight of 
the nanopaper and antenna was 0.18 g. We also per formed a 
fl exibility test on the fabricated antenna, repeatedly forming it 
around a circular curve with a half-inch radius of curvature (see 
Figure 14b). This was to simulate the effects due to fl apping. No 
cracking of the metal traces was observed, nor was tearing of 
the paper. The measurements, presented next, were done after 
the fl exibility tests, in order to show the expected performance 
after many fl apping cycles.

4.3 Measurements

Figures 15 and 16 show the measured 11S  and radiation pat-
terns of the fabricated nanopaper antenna, compared to the 

Figure 13. The fabrication of the printed antenna on the 
nanopaper substrate.

Figure 14a. The nanopaper antenna, supported by Styro-
foam for measurements.

Figure 14b. A demonstration of the nanopaper antenna’s 
fl exibility.

Figure 15. The measured 11S  of the proposed antenna com-
pared with the simulation.
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Figure 16. The radiation patterns of the proposed antenna: (a) the simulation on the yz plane, (b) the measured pattern on 
the yz plane, (c) the simulation on the xz plane, and (d) the simulation on the xy plane. 

a) b)

c) d)

simulated results. For measuring the antenna, we fi rst attached 
it to a Styrofoam backing, and then placed the antenna and 
Styrofoam over a large ground plane, to form a monopole 
antenna. This confi guration was used in order to simulate the 
operational scenario where the fl apping robot had two wings, 
each with an antenna, facing each other. The ground plane was 
used to form the image, which simulated the existence of the 
antenna in the “other” wing. We show the complete measure-
ments including the pattern on the back side of the ground 
plane, for completeness. However, in an operational scenario, 
the robot would have two antennas facing each other on 
opposing wings. In this case, the expected pattern can be 
inferred from our measurements by using the patterns in the 
upper-half plane only, and refl ecting those into the lower-half 
plane. The resulting pattern was more like a dipole, and was 
what we would expect to achieve in an operational scenario.

 The measured results showed good agreement with the 
simulated results. As expected, monopole-like radiation pat-
terns having a null in the broadside direction ( 0θ = ) and an 
omnidirectional shape in the azimuthal plane were observed. In 
addition, the measured patterns verifi ed good polarization 
purity, and a radiation effi ciency of 92%. While the fabricated 
antenna was tested using a ground plane of dimensions 600 mm 
× 600 mm, the actual antenna topology for the fl ap ping robotic 
platform was a dipole version, incorporating the same antenna 
pattern on the opposite wing. The change in the input impedance 
from 50 ohms to 100 ohms, resulting from the conversion of the 
monopole version to the dipole version, could be handled by 
using a balun with a 100-ohm output impedance.

5. Conclusions

 This paper demonstrated a method of preparing ultra-
lightweight, high-strength polyimide nanopaper that can be 
used in applications such as electronic packaging and as a sub-
strate for electronic circuits. As an application of the nanopa-
per, two conformal antennas on the wings of a fl apping robotic 
platform were presented. The fi rst antenna design used metal-
lic thread formed into a spiral dipole and sandwiched between 
nanopaper/fi berglass layers. This process was simple and did 
not require a clean room, but demonstrated a need for careful 
control of the wire geometry.

 The second antenna design required a shadow mask and 
sputtering system, printing a metallic antenna directly onto 
the nanopaper. This provided for complex geometrical designs 
without damaging the nanopaper. The miniaturized folded 
dipole topology provided reliable impedance matching to a 
50-ohm feed.

 The design and fabrication techniques presented here can 
be used in a variety of situations where antennas need to be 
embedded in low-weight, fabric-like substrates.
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Figure 16. The radiation patterns of the proposed antenna: (a) the simulation on the yz plane, (b) the measured pattern on 
the yz plane, (c) the simulation on the xz plane, and (d) the simulation on the xy plane. 

a) b)

c) d)

simulated results. For measuring the antenna, we fi rst attached 
it to a Styrofoam backing, and then placed the antenna and 
Styrofoam over a large ground plane, to form a monopole 
antenna. This confi guration was used in order to simulate the 
operational scenario where the fl apping robot had two wings, 
each with an antenna, facing each other. The ground plane was 
used to form the image, which simulated the existence of the 
antenna in the “other” wing. We show the complete measure-
ments including the pattern on the back side of the ground 
plane, for completeness. However, in an operational scenario, 
the robot would have two antennas facing each other on 
opposing wings. In this case, the expected pattern can be 
inferred from our measurements by using the patterns in the 
upper-half plane only, and refl ecting those into the lower-half 
plane. The resulting pattern was more like a dipole, and was 
what we would expect to achieve in an operational scenario.

 The measured results showed good agreement with the 
simulated results. As expected, monopole-like radiation pat-
terns having a null in the broadside direction ( 0θ = ) and an 
omnidirectional shape in the azimuthal plane were observed. In 
addition, the measured patterns verifi ed good polarization 
purity, and a radiation effi ciency of 92%. While the fabricated 
antenna was tested using a ground plane of dimensions 600 mm 
× 600 mm, the actual antenna topology for the fl ap ping robotic 
platform was a dipole version, incorporating the same antenna 
pattern on the opposite wing. The change in the input impedance 
from 50 ohms to 100 ohms, resulting from the conversion of the 
monopole version to the dipole version, could be handled by 
using a balun with a 100-ohm output impedance.
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 This paper demonstrated a method of preparing ultra-
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used in applications such as electronic packaging and as a sub-
strate for electronic circuits. As an application of the nanopa-
per, two conformal antennas on the wings of a fl apping robotic 
platform were presented. The fi rst antenna design used metal-
lic thread formed into a spiral dipole and sandwiched between 
nanopaper/fi berglass layers. This process was simple and did 
not require a clean room, but demonstrated a need for careful 
control of the wire geometry.

 The second antenna design required a shadow mask and 
sputtering system, printing a metallic antenna directly onto 
the nanopaper. This provided for complex geometrical designs 
without damaging the nanopaper. The miniaturized folded 
dipole topology provided reliable impedance matching to a 
50-ohm feed.

 The design and fabrication techniques presented here can 
be used in a variety of situations where antennas need to be 
embedded in low-weight, fabric-like substrates.
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Abstract

Airborne sounding of ice sheets requires large, wing-mounted antenna arrays to effectively fi lter and suppress the 
surface clutter that often masks weak bed echoes. However, when a high-sensitivity antenna array is mounted to the 
wings of an aircraft, the array is subjected to structural dynamics and subsequent deformation. We measured the 
response of a scaled wing-mounted array when excited at four different vibration frequencies to characterize the effects 
of airframe vibration on array beamforming and received radar signals. We determined that phase and amplitude errors 
caused by the expected vibration from the aircraft do not signifi cantly degrade the radiation pattern when the Chebyshev 
or minimum-variance distortionless response (MVDR) beamformers are used. In the case of the Chebyshev-weighted 
array, vibrations did not cause pattern sidelobes to vary by more than 1.5 dB. In the case of the minimum-variance-
distortionless-response-weighted array, vibrations did cause pattern nulls to shift and decrease in depth, but these 
pattern distortions were negligible, and did not signifi cantly degrade clutter suppression. In addition, we were able to 
identify the frequency of vibration as well as the frequency of local structural modes by taking the FFT of the signal’s 
phase.

Keywords: Airborne radar; array deformation; phased arrays; antenna measurements; beamforming

1. Introduction

Radar sounding and imaging of Arctic and Antarctic ice 
sheets is well established [1, 2]. High-sensitivity radars 

with advanced signal-processing capabilities are required 
for sounding and imaging ice-sheet margins to overcome 
surface clutter that can mask weak bed echoes. Radars used 
by the Center for Remote Sensing of Ice Sheets (CReSIS) for 
sounding and imaging the ice-sheet-bed interface operate in the 
high-frequency (HF) and very high frequency (VHF) regions of 
the electromagnetic spectrum. To facilitate the larg est possible 
array, the antenna elements are often mounted externally to 
the wings of the aircraft. By attaching the antenna array to the 
wings, the electrical performance is infl u enced by the motion 
of the airframe, as in-fl ight aerodynamic and inertial loads and 

vibrating structures cause the wing-mounted array to deform 
from its nominal position. The array deformation causes relative 
phase and amplitude errors between elements.

 One of the most well-known groups to study the effects of 
array vibration was the NATO Research Task Group 50 [3-5]; 
however, their work focused on improving direction-of-arrival 
estimates in the presence of vibration. The group found that 
fi rst-order vibration modes and steady bending of a con formal 
array in an unmanned aerial vehicle (UAV) wing cause greater 
distortion than higher-order vibration modes, particu larly with 
regards to main-beam pointing and direction fi nd ing. The group 
built a scale model demonstrator to show that the direction-of-
arrival estimates of a vibrating array could be improved by 
taking enough data samples [6]. The antennas used in their test 
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