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I. INTRODUCTION 

Metasurfaces such as transmitarrays (TAs), reflectarrays (RAs), 

and Metasurface-empowered antennas, are attractive structures 

that can achieve high gain, wide bandwidth, and beam-

reconfigurable performance, possessing planar, lightweight, and 

easily fabricated properties [1–8]. TAs, in particular, have received 

significant attention due to their ability to refract the radiation 

beam on the desired direction by compensating for the phase of 

the incident electromagnetic (EM) wave. Therefore, TAs play a 

decisive role in high-frequency applications such as mmWave 

base stations, automotive radar systems, and satellite communica-

tions [8–10]. 

In general, there are two types of TAs: passive and active. The 

former steers the main beam with phase shifters or switching 

circuits connected to the source antenna [11, 12]. However, this 

type of TA requires the integration of additional components on 

the radio-frequency (RF) integrated circuit. The interconnec-

tions between these components increase the complexity of the 

circuits and RF power consumption, leading to excessive inser-

tion loss [13]. 

In contrast, the latter type metamorphoses its EM properties, 

that is, phase responses, in the spatial domain. This characteristic 

can overcome the disadvantages of a passive TA. Fig. 1 illustrates 

the operational principle of a liquid crystal-based transmitarray 

(LCTA), which belongs to the category of active TAs. Liquid 
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Abstract 
 

This paper introduces a novel method for implementing a liquid crystal-based transmitarray (LCTA) antenna with two-dimensional (2D) 

beam scanning capability for the first time. Extending the phase tuning range of LCTA unit cells faces a crucial limitation in maintaining 

a thin single liquid crystal (LC) layer because the tuning range is significantly dependent on the LC thickness. The proposed transmission 

line-based unit cell design could overcome this limitation due to its horizontal propagation characteristic among the LC layers. Therefore, 

the proposed LCTA unit cell achieves a phase tuning range of 130° while maintaining the thickness of the LC under 0.25 mm at 28 

GHz. Furthermore, a 10 × 10 array design is fabricated and measured to verify its 2D beam scanning capability. Consequently, the maxi-

mum scanning angle of 30° is obtained in the E-plane and H-plane from measurements. Comparative results with previous studies also 

emphasize the advantages of the proposed design. 
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crystal (LC) adjusts the phase of the wavefront after the TA 

receives an RF signal from the feed antenna. Consequently, the 

direction of the EM wave radiated from the TA can be recon-

figured. 

Recently, active TAs have been investigated by employing active 

components or metamaterials such as PIN diodes, varactors, and 

LCs [14–18]. While PIN diodes have an advantage in beam-

steering performance, the undesirable power consumption result-

ing from changing the on/off states by controlling currents can 

decrease the efficiency of systems. On the other hand, varactors 

vary the capacitance by applying voltages without currents flow-

ing through the bias circuit. Varactors also provide a continuous 

change in the phase response, while PIN diodes result in discrete 

responses. However, these types of active components need to be 

mounted on substrates, making them vulnerable to external colli-

sions. Furthermore, active components have limited operating 

frequencies due to their self-resonance frequencies. Unlike active 

components, an LC transforms its permittivity with various DC 

bias voltages. Additionally, an LC has the advantage of operating 

at high frequencies since it lacks a self-resonance frequency. Fur-

thermore, mass-produced LCs cost little. 

For the reasons mentioned above, LC-based metasurfaces are 

currently under active study [16–23]. However, while RAs and 

active frequency selective surfaces with LC have been widely in-

vestigated in recent decades, the LCTA-related research field re-

mains limited. Due to the narrow tuning range of the permittivity 

in LC, the beam coverage of LCTA faces a crucial limitation 

when it is implemented in real-world communication systems. In 

[18], for instance, only achieved the maximum scan angle of ±5°.  

This is the first study to propose an LCTA focusing on the 

mmWave communication band with a two-dimensional (2D) 

beam scanning capability. To achieve a wide tunable phase shift 

range despite the limited variance of permittivity, the meander 

line embedded in a substrate-integrated waveguide (SIW) unit 

cell structure is implemented. The unit cell consists of receive–

transmit antennas and transmission lines such as SIW and 

stripline, where the unit cell receives the RF signal from the feed-

ing source and transmits it to the far field with phase compensa-

tion. Typically, the incident EM wave propagates conventional 

unit cells vertically (i.e., through LC thickness). In contrast, in 

the proposed unit cell, the EM wave travels along the transmis-

sion lines horizontally due to the antenna–SIW transitions in the 

unit cell (Fig. 2). Due to the horizontal propagation of the EM 

wave in the unit cell, the electrical length of the unit cell increases 

drastically more than in traditional unit cell structures. 

In Section II, the design of the proposed LCTA unit cell is 

introduced with the simulated frequency responses. Section III 

rovides the measurement setup and results of radiation patterns. 

Finally, Section IV concludes the study. 

II. LCTA DESIGN PRINCIPLES 

1. Phase Tuning Range Expansion 

In microwave theory, the phase delay 𝜑 of the transmission 

line is defined as: 
 𝜑 = 𝛽ℓ, (1)
 𝛽 = 𝜔√𝜇𝜀,  (2)
 

where 𝜔 is the angular frequency (i.e., 𝜔 =  2𝜋𝑓), ℓ is the 

physical length of the transmission line, and 𝜇 and 𝜀 are the 

permeability and permittivity of the material filled in the trans-

mission line, respectively [23]. To induce a phase variation in the 

two-port system at the same frequency, either the physical 

length or material property must be changed (i.e., Δ𝜑 =  𝛽Δℓ 

or Δ𝜑 =  Δ𝛽ℓ).  

Hence, the LC-based unit cells vary their phase tuning range 

by changing their material properties. However, LC-based unit 

cells typically have a narrow phase tuning range due to the limited 

range of the dielectric constant. The tunable range of the dielec-

tric constant of the LC used in this paper increases from 2.5 to 

3.5 (Merck GT7-29001) where the loss tangent decreases from 

0.012 to 0.0064 [21, 22]. In this case, the simplest way to expand 

the tuning range is by increasing the length of the wave propaga-

tion (Fig. 2(a)). Thus, Maasch et al. [18] proposed a fishnet struc-

ture with two thick layers of LC substrates. From (1) and (2), we 

can assume that using two layers of thick LC substrates can sig-

nificantly increase the phase tuning range. Although this meth-

odology can expand the tuning range, the fabrication process 

would be complicated because of the increased bias circuits and 

increased cost compared to using a thin single LC layer. Therefore, 

this paper proposes the meander line structure on the LC sub-

strate to increase the tunable range without using an additional 

LC layer. Unlike the conventional structure, the incident wave 

 

Fig. 1. Operation principle of an LCTA. The LCTA compensates for 

a phase of an incident wavefront from the feed source.
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propagates horizontally on the LC layer, extending the length of 

the transmission line from the thickness to the width of the sub-

strate. Fig. 2(b) illustrates the proposed unit cell design concept. 

 

2. Unit Cell Design 

Figs. 3 and 4 show the exploded view and detailed geometry 

of the proposed unit cell design. After the antenna receives the 

EM wave from the feed source, shorting vias among the patch 

and slotted ground can guide the wave to the SIW structure 

[25]. The SIW structure prevents leakage of the EM wave that 

interferes with the adjacent unit cells and bias lines. To guide the 

wave along the meander line, the transition between a slot and a 

stripline is employed.  

On the top and bottom layers, magnetoelectric dipole anten-

nas are adopted to facilitate the guidance of the incident wave 

from the antenna to the SIW structure. Fig. 5(a) plots the sur-

face current vector of the magnetoelectric dipole on the unit cell 

to clarify the polarization characteristic. The polarization of the 

dipole layer maintains its direction despite the transmission lines 

being embedded in the LC substrate. As shown in Fig. 5(b), the 

electric field is concentrated strongly on the gap between the 

patches. This field excites the TE10 mode of the SIW and guides 

the wave to the next layers. To utilize the meander line for a 

wider phase tuning range, the SIW and meander stripline are 

coupled through the slot transition. Fig. 5(c) shows the electric 

field among the unit cell cross-section on the E-plane. The no-

table aspect is the propagation path inside the LC layer, which 

propagates horizontally guided by the meander line structure. 

Fig. 6 shows the simulated S21 responses with respect to the 

relative permittivity of the LC. The proposed unit cell design 

achieves a phase tuning range of 130° while maintaining the 

insertion loss level under 6 dB for the frequency point of 28 

GHz. Fig. 7 depicts frequency responses affected by the number 

of bias lines. The number inside the bracket of the legend refers 

to the relative permittivity of the LC layer. The frequency re-

sponses of the unit cell regarding the number of bias lines are 

unchanged because the via walls block the E-field excitation on 

the bias lines (Fig. 5(b)). 

 

(a) (b) 

Fig. 2. Examples of ways to expand the phase tuning range: (a) increas-

ing LC thickness (conventional) and (b) converting transmis-

sion path (proposed). 
 

 

Fig. 3. Exploded view of the proposed unit cell design. 

 

(a) 

 

(b) ©

Fig. 4. Geometry of the unit cell: (a) unit cell cross-section on E-plane 

(black dash: via wall), (b) dipole layer, and (c) stripline layer; 

wp=1.8, lp=1.4, wslot=0.9, lslot=2.6, wt=0.2, lt=2.6, dm=0.4, 

and lm=3.0 (unit: mm). 

 

 

Fig. 5. Field distribution of the proposed unit cell design: (a) top view 

(current vector), (b) top view (E-field on dipole and bias layer), 

and (c) unit cell cross-section on E-plane (E-field).
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III. FABRICATION AND MEASUREMENT RESULT 

A fabricated example of the proposed LCTA sample is shown 

in Fig. 8. The radiating region of the LCTA is 52 mm × 52 mm, 

and the supplemental area consists of DC bias connections. The 

Taconic TLY-5 substrate (ε = 2.2 and tanδ = 0.0009) is used 

with a thickness of 0.25 mm for all substrate layers. Fig. 9 depicts 

the measurement setup of the proposed LCTA. The distance 

between the receiver horn and LCTA is 1.5 m, which satisfies 

the far field condition (i.e., distance  2𝐷ଶ/λ  at 28 GHz 

where D = √2 ൈ 52 mm). The DC bias control unit is con-

nected to the LCTA and the laptop. This bias unit can apply 

voltage levels from 0 to 20 V for 100 channels. Therefore, the 

number of unit cells in the LCTA is also 100 (i.e., a 10 × 10 array) 

due to the control unit channel allowance. To match the bias 

voltage level and the relative permittivity of the LC layer, the 

vector network analyzer (VNA) MS4647A from Anritsu is con-

nected to the TRx pair, and the control unit applies the same 

voltage to all the unit cells. Fig. 10 shows the phase difference 

with respect to the LC permittivity and DC bias voltage, repre-

senting simulation and measurement results, respectively. There is 

a discrepancy in operating frequency between the simulated and 

measured results because the PCB was fabricated in-house, 

which led to inaccurate etching processes, misaligned layers, LC 

leakage through vias, and unexpected minor errors. 

In Fig. 11, the simulated and measured radiation patterns of the 

proposed design are shown. From this figure, it is evident that the 

proposed LCTA can steer the main beam direction to 30° not only 

in the E-plane but also in the H-plane. The 2D beamforming 

capability was achieved because its SIW structure isolates the DC 

connections between adjacent unit cells. The peak gains of the 

simulated and measured results are 14.5 and 6.1 dBi, respectively. 

 

Fig. 6. Frequency responses of the unit cell regarding the LC permittivity. 
 

 

Fig. 7. Frequency responses of the unit cell regarding the number of bias 

lines. Numbers inside the brackets refer to the LC permittivity.

 

(a) (b)

Fig. 8. A photograph of the fabricated sample: (a) dipole layer with 

bias lines, and (b) meander layer. 

 

 

Fig. 9. Measurement setup. 
 

 

(a) (b)

Fig. 10. Simulated and measured results of phase differences of the 

LCTA unit cell (Sim: at 28 GHz, Meas: at 28.5 GHz).

 
(a) (b)

Fig. 11. Simulated and measured radiation pattern results on (a) E-

plane and (b) H-plane (Sim: at 28 GHz, Meas: at 28.5 GHz).
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Table 1 shows the comparative results of previous studies on 

LCTA [16–18]. A comparison of operating frequency, LC 

thickness, number of LC layers, phase tuning range, beam scan-

ning capability, and maximum steering angle is conducted. The 

figure of merit (FoM) is defined as the ratio of the maximum 

phase tuning range over the LC thickness: 
 𝐹𝑜𝑀 = Δ𝜑𝑇𝑜𝑡𝑎𝑙 𝐿𝐶 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (mm). (3)
 

The remarkable feature of the proposed LCTA is the 2D 

beam scanning capability with the thin single LC layer. 

IV. CONCLUSION 

In this paper, an LCTA antenna achieving 2D beam scan-

ning capability for mmWave communication is implemented. It 

is observed that manipulating the propagation path among the 

unit cell horizontally could extend the phase tuning range of the 

thin LC layer-based unit cell design. The narrow scanning 

range of conventional LCTAs is overcome by adopting the pro-

posed method, steering the main beam to 30°. Despite the per-

sistent practical limitations of LCTA, this paper presents for the 

first time the feasibility of a 2D beam-steering LCTA that has 

been both fabricated and measured. Additionally, the proposed 

LCTA unit cell employs a concept that broadens the phase tun-

ing range while using a minimal amount of LC layer. 
 

This work was supported by Samsung Research Funding 
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