

2022 IEEE International Symposium on Radio-Frequency Integration Technology August 29 – 31, 2022 • Busan Korea • www.RFIT2022.org

Program Booklet

Photo: Ġwangan

Contents

Program at a Glance	p. 1
Welcome Messages	p. 3
Organizing Committee	p. 5
Technical Program Committee	p. 6
Exhibitors & Sponsors	p. 8
General Information	p. 9
Plenary Session	p. 10
Workshops	p. 12
RFIT Student Paper Competition	p. 20
Social Events	p. 22
Floor Map	p. 23
Understanding Session Code	p. 24
Technical Program DetailsTuesday 30 AugustWednesday 31 August	p. 25 p. 26 p. 36
Author Index	p. 44

Program at a Glance

D-1, Monday, August 29		
Boom Time	Forum 1	
	M1W Workshop: mm-wave/THz Integrated Beamforming Technologies	
09:30 - 10:10	M1W.1: Prof. Kenichi Okada	
10:10 - 10:50	M1W.2: Dr. Aoki Yuuichi	
10:50 - 11:10	Break]
11:10 - 11:50	M1W.3: Prof. Jungsuek Oh	
11:50 - 12:30	M1W.4: Dr. Jinseok Park	×
12:30 - 13:30	Lunch @ Cafeteria (2F)	hibit
	M2W Workshop: RF Technologies for Emerging Biomedical Applications	tion
13:30 - 14:10	M2W.1: Prof. Kaiyuan Yang	
14:10 - 14:50	M2W.2: Prof. Joonsung Bae	
14:50 - 15:10	Break	
15:10 - 15:50	M2W.3: Dr. Minyoung Song	
15:50 - 16:30	M2W.4: Prof. Taekwang Jang	
17:00 - 18:00	Welcome Reception @ Vernazza	

Program at a Glance

D-2, Tuesday, August 30			
Boom Time	Forum 1	Vernazza	
09:00 - 10:20	T1A Microwave/mm-Wave Frequency Synthesis	T1B Power Amplifiers for 5G Applications	
10:20 - 10:40	Bre	eak	
10:40 - 10:50	Opening Ceremony		
10:50 - 11:30	T2P.1 Plenary Talk 1: Prof. Mark Rodwell		
11:30 - 12:10	T2P.2 Plenary Talk 2: Prof. Songcheol Hong		Exh
12:10 - 13:30	Lunch @ Cafeteria (2F)		ibit
13:30 - 15:10	T3A mm-Wave/THz Building Blocks	T3B Advanced Circuit and System Designs	tion
15:10 - 16:20	T4F Interactive Forum	RFIT Student Paper Competition	
16:20 - 18:00	T5A Technologies for mm-wave/THz Circuits and Systems	T5B Wireless Power Transfer and Power Management	
18:30 - 20:30	Banquet @ Mo	onterosso (B1)	

D-3, Wednesday, August 31			
Boom Time	Forum 1	Vernazza	
09:00 - 10:20	W1A mm-Wave/THz Signal Generation	W1B Antennas and Metasurfaces	
10:20 - 10:40	Bre	eak	
10:40 - 12:00	W2A Advanced Power Amplifier Designs	W2B Passive Components	Exhi
12:00 - 13:30	Lunch @ Cafeteria (2F)		bitio
13:30 - 15:10	W3A Advanced mm-Wave/THz Circuit Design Techniques	W3B Emerging Technologies, Circuits, Systems, and Applications	Ĭň
15:10 - 15:30	Break		
15:30 - 17:10	W4A mm-Wave/THz Systems and Applications	W4B Radar and Imaging	
17:10 - 17:20	Clos	sing	

Welcome Messages

Greetings from the General Chair

On behalf of the organizing committee, I would like to welcome you to the 2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT 2022), which will be held on August 29 – 31, 2022, in Busan, Korea. By the time you read this greeting message, the conference should be ready to start or has already started, for which the organizing committee has been working hard for the past few years. Looking back, RFIT had its inaugural meeting on 2005 in Singapore and became an IEEE conference sponsored by the MTT Society from its 6th conference that was

held in Hefei, China, in 2014. Since then, five countries – China, Japan, Taiwan, Korea, and Australia – have been taking turns to host the conference, which has developed into an established major event stationed in Asia that covers a wide range of exciting topics surrounding RF engineering. This year marks the 14th meeting in the series, which is also the second RFIT event Korea hosts, after the 9th meeting held in Seoul in 2017.

The past two RFIT meetings were affected by COVID-19, leading to a hybrid conference in Hiroshima, Japan (2020) and a fully online event in Taiwan (2021). The organizing committee of RFIT 2022 had initially hoped to see the pandemic to be over well before the conference, but it turned out to be more persistent than expected and still lasts. Hence, it was decided this year's conference will be again held in a hybrid format. The past couple of years, however, have witnessed great advances in operating techniques for virtual or hybrid meetings. RFIT 2022 will be conveniently accessed by both online and offline attendees through a tool developed for this purpose. For this reason, you may expect the conference will fully serve its original purpose of exchanging technical ideas as well as developing human networks.

Busan is the 2nd largest city and also the largest port in Korea. It is full of attractions that you may enjoy in addition to the exciting technical sessions offered by RFIT 2022. I would like to take this opportunity to appreciate the great efforts generously provided by the organizing committee as well as technical program committee members. I hope all the attendees, both online and offline, will find this year's program a great technical resource that will help develop their expertise in respective research fields.

Jae-Sung Rieh RFIT 2022 General Chair Korea University

Welcome Messages

Greetings from the Technical Program Chair and Co-Chair

On behalf of the RFIT 2022 Technical Program Committee (TPC), we would like to thank all the authors for sharing their excellent research results with RFIT 2022. With those contributions, we could prepare an exciting 3-day program for the symposium. The first day of the symposium is filled with two workshops

on "mm-Wave/THz Integrated Beamforming Technologies" and "RF Technologies for Emerging Biomedical Applications," which will provide comprehensive overviews of these interesting topics. During the following two days, technical papers, both invited and contributed, will be presented. A total of 95 papers, which were carefully selected by 69 TPC members out of 108 submissions from 12 countries, will be presented over 15 technical sessions, including one poster session. On the second day, we will have two plenary talks, "100-300GHz MIMO Communications: Transistors, ICs, Arrays, and Systems" by Prof. Mark Rodwell from the University of California, Santa Barbara, USA, and "Subarray Hybrid Beamforming Front-End ICs for Millimeter-Wave Communication and High-Resolution Sensing" by Prof. Songcheol Hong from KAIST, Korea. In addition, RFIT Paper Awards will be presented to the authors of the three best papers presented in the symposium, and the Student Paper Competition (SPC) will take place, for which 11 student finalists will compete for the three final winners.

We would like to take this opportunity to thank all the TPC members and subcommittee chairs for their valuable time and effort that has been so generously contributed to the creation of a great technical program and also thank the session chairs who will facilitate the sessions during the symposium. We sincerely hope all the attendees will find the technical program we prepared informative and useful.

Sincerely yours,

Minkyu Je RFIT 2022 TPC Chair KAIST, Korea Ho-Jin Song RFIT 2022 TPC Co-Chair POSTECH, Korea

Organizing Committee

ExCom Committee

ExCom Chair: Huei Wang, National Taiwan University, Taiwan ExCom Members Jae-Sung Rieh, Korea University, Korea Mohammad Madihian, Drexel University, USA Wei Hong, Southeast University, China Kamran Ghorbani, RMIT University, Australia Noriharu Suematsu, Tohoku University, Japan Goutam Chattopadhyay, NASA, USA

Organizing Committee

General Chair: Jae-Sung Rieh, Korea University Technical Program Committee Chair: Minkyu Je, KAIST Technical Program Committee Co-chair: Ho-Jin Song, POSTECH Tutorial/Workshop Chair: Sanggeun Jeon, Korea University Finance Chair: Hyunchul Ku, Konkuk University Publications Chair: Wonbin Hong, POSTECH Publicity Chair: Byung-Wook Min, Yonsei University Local Arrangements Chair: Ockgoo Lee, Pusan National University Exhibition Chair: Franklin Bien, UNIST Award Chair: Jong-Ryul Yang, Yeungnam University

RFIT 2022 Secretariat

Email: info@rfit2022.org Website: www.rfit2022.org Phone: +82 54 434-3280

Technical Program Committee

Frequency Generation

Chair	Taekwang Jang, ETH Zürich, Switzerland
Co-chair	Vadim Issakov, TU Braunschweig, Germany
	Heein Yoon, UNIST, Korea
	Woorham Bae, Ayar Labs, USA
	Wooseok Choi, Seoul National University, Korea
	Pier Andrea Francese, IBM Zurich, Switzerland
	Lianbo Wu, Beihang University, China
	Youngwoo Ji, ETH Zürich/ Postech, Switzerland

Power Amplifiers

Hyunchul Park, Samsung Electronics, Korea	
Saeid Daneshgar, Intel, USA	
Dixian Zhao, Southeast University, China	
Yuuichi Aoki, Samsung Electronics, Korea	
Youngoo Yang, Sungkyunkwan University, Korea	
Hyejeong Song, Qualcomm, USA	
Kazuaki Kunihiro, NEC, Japan	

mm-Wave and THz Circuits

kwan University, Korea
niversity, Egypt
USA
iversity, Korea
uk University, Korea
ng Research America, USA
USA
Scientific Company, USA

RF Front-End and Transceiver ICs

Chair	Ilku Nam, Pusan National University, Korea
Co-chair Yiwu Tang, Qualcomm, USA	
	Jusung Kim, Hanbat National University, Korea
	Donggu Im, Jeonbuk National University, Korea
	Chuan Wang, Qualcomm, USA
	Bum-Kyum Kim, Broadcom, USA

Analog and Mixed-Signal ICs

ChairSang-Gyu Park, Hanyang University, KoreaCo-chairQiang Li, University of Electronic Science and Technology of China, China
Young-Ha Hwang, Soongsil University, Korea
Moon-Kyu Cho, Korea National University of Transportation, Korea
Jaeduk Han, Hanyang University, Korea
Jun-Chau Chien, National Taiwan University, Taiwan
Takesh Yoshida, Hiroshima University, Japan

Technical Program Committee

Antenna and Packaging Technologies

Chair	Wonbin Hong, POSTECH, Korea
Co-chair	Jung han Choi, Fraunhofer Institute, Germany
	Jungseuk Oh, Seoul National University, Korea
	Yue Ping Zhang, Nanyang Technological University, Singapore
	Huan-Chu Huang, Visionox Technology Co., Ltd., China
	Sangkil Kim, Pusan National University, Korea

Sensor and Biomedical ICs

Chair	Seong-Jin Kim, UNIST, Korea
Co-chair	Gao Yuan Institute of Microelectronics, A*STAR, Singapore
	Sung-Yun Park, Pusan National University, Korea
	Hyung-Min Lee, Korea University, Korea
	Sohmyung Ha, NYU Abu Dhabi, UAE
	Arup George, DGIST, Korea
	Yaoyao Jia, UT Austin, USA
	Hao Yu, SUSTech, China

Wireless Power Transfer Technologies

Chair	Franklin Bien, UNIST, Korea
Co-chair	Sai Oruganti, Jiangxi university of science and technology Ganzhou, China
	Gangil Byun, UNIST, Korea
	Hyungho Ko, Chung Nam Univ. (CNU), Korea
	Son Xuat Ta, Hanoi University of Science and Technology (HUST), Vietnam
	Jaegon Lee, Kyungnam Univ., Korea

Emerging ICs

Chair	Jae-Yoon Sim, POSTECH, Korea
Co-chair	Kenichi Okada, Tokyo Institute of Technology, Japan
	Makoto Takamiya, University of Tokyo, Japan
B	Bongjin Kim, University of California, Santa Barbara, USA
	Tae Wook Kim, Yonsei University, Korea
	Ho-Jin Song, POSTECH, Korea

Device Technologies, Modeling, and CAD

ChairMyounggon Kang, Korea National University of Transportation, KoreaCo-chairJohn Hu, Oklahoma State University, USAJooyoung Jeon, Gangneung-Wonju National University, KoreaIckhyun Song, Hanyang University, KoreaJongwook Jeon, Konkuk University, KoreaZhenhua Wu, Chinese Academy of Science, ChinaSaeed Zeinolabedinzadeh, Arizona State University, USA

Exhibitors & Sponsors

Exhibitors

Silicon Mitus

KREEMO

Sponsors

Sponsored by

The IEEE Microwave Theory and Techniques Society (MTT-S)

Organized by

The Korean Institute of Electromagnetic Engineering and Science (KIEES)

Financially contributed by

- Korean Federation of Science and Technology Societies
- KAIST Micromillimeter Wave and Antenna Laboratory
- Korea University
- Busan Tourism Organization
- Korea Tourism Organization

Korean Federation of Science & Technology Societies

General Information

Hybrid Format

RFIT 2022 will be in a hybrid mode, consisting of both on-site and online sessions. All the sessions will have live presentations and answer questions on Webex. On-site and online speakers are requested to attend their live sessions 10 minutes before their sessions. Speakers are also expected to answer the questions that attendees pose to them asynchronously via the Comments box on InfoVaya. All presentation materials will be available on the Cloud Platform InfoVaya. Speakers have already uploaded their presentation materials on InfoVaya.

COVID-19 Safety Guideline

Overseas travellers need to have negative COVID-19 PCR test result certificate within 3 days or Rapid Antigen Test (RAT) result within 1 days for boarding. They need to enter related information and obtain a QR code. They are also required to have an additional test (PCR) within 1 days after arrival at airport or near the place of stay. (Released on August 1, 2022)

Symposium Venue

RFIT 2022 will be held at Forum 1 and Vernazza on the 3rd floor of Hanwha Resorts Haeundae, Busan. See the floor map.

Registration Information

On-site registration will be open from 8:30 am to 6:00 pm from Monday to Wednesday, 29 - 31 August at the lobby of the 3rd floor of the hotel.

Exhibition

Exhibition will be open from 9 am to 6 pm at the lobby of the 3rd floor of the hotel during the Symposium.

Green MICE Compliance

RFIT 2022 Organizers will comply with the Green MICE Guidance (ISO20121: Event Sustainability Management System) that makes the symposium more sustainable and less impact on global environment. Accordingly, we will offer you electronic distribution of materials (proceedings, final program book, receipt, or a certificate of attendance), reusable badge, and tap water instead of plastic bottles. Attendees are encouraged to use public transport.

Symposium Dates, Times, and Language

Symposium dates and times are based on Korean time (GMT+9). Please note that Korea is 14 hours ahead of the Eastern Standard Time (EST). The official spoken language is English. Translation service is not provided.

Plenary Session

T2P.1: Plenary Speech Tuesday 30-Aug, 10:50 - 11:30, Room: Forum 1

Chair: Minkyu Je, KAIST

100-300GHz MIMO Communications: Transistors, ICs, Arrays, and Systems

Prof. Mark Rodwell, USCB, USA

Abstract: 100-300GHz wireless systems can provide very high data rates per signal beam, and, given the short wavelengths, even compact arrays can contain many elements, permitting massive spatial multiplexing for further increased capacity. We will describe the underlying transistor technology, plus ICs, modules, and system design of 140 GHz massive MIMO wireless hubs and 210 GHz and 280 GHz MIMO backhaul links. (Authors: Mark Rodwell¹, Ali A. Farid¹, A. S. H. Ahmed1, M. Seo², U. Soylu¹, A. Alizadeh¹, N. Hosseinzadeh¹, S. Lee¹, ¹University of California, Santa Barbara, ²Sungkyunkwan University)

Biography: Mark Rodwell holds the Doluca Family Endowed Chair

in Electrical and Computer Engineering at UCSB and directs the SRC/DARPA ComSenTer Wireless Research Center. His research group develops high-frequency transistors, ICs and communications systems. He and his collaborators received the 2010 IEEE Sarnoff Award, the 2012 Marconi Prize Paper Award, the 1997 IEEE Microwave Prize, the 2009 IEEE IPRM Conference Award, and the 1998 European Microwave Conference Microwave Prize.

Plenary Session

T2P.2: Plenary Speech Tuesday 30-Aug, 11:30 - 12:10, Room: Forum 1

Chair: Ho-Jin Song, POSTECH

Subarray hybrid beamforming front-end ICs for millimeter-wave communications and high resolution sensings

Prof. Songcheol Hong, KAIST, Korea

Abstract: Millimeter-wave 5G wireless communication adopts a subarray hybrid beamforming structure in the base stations, since it provides a simple front-end structure to drive many antenna arrays. It is also expected to be used in millimeter wave B5G and 6G communications more actively because the simpler structure is necessary in the higher frequencies. Especially, the need of joint communication and sensing (JCAS) in B5G communications causes the structure become very important to support many antenna arrays efficiently. Since it is basically consisted of several RF beamforming structures, many RF beamforming ICs are used to implement the hybrid beamforming front-end.

In this talk, it will be explained why the hybrid front-end structure with several RF beamforming ICs is the simplest and

widely used compared to the other ones. The beamformer ICs with the key RF subcircuits, such as a power amplifier, a low noise amplifier, a phase shifter, a variable gain amplifier will be presented for millimeter-wave 5G communication. Especially the beamforming phase shifters in the ICs are presented and compared for B5G communications. A high angular resolution MIMO radar structure with the phased subarray antennas is also introduced, which might be used for JCAS in B5G and 6G communications.

Biography: He received the B.S and M.S degrees in Electronics Engineering from Seoul National University in 1982 and 1984, respectively and the Ph.D degrees in Electrical Engineering and Computer Science from the University of Michigan in 1989. He is currently a Professor in the School of Electrical Engineering at the KAIST (Korea Advanced Institute of Science and Technology) and KT-chaired professor. He received Qualcomm Faculty Award 2019. He visited EECS Department of Stanford University as a visiting professor in 1997. He worked with Samsung Microwave Semiconductor in Milpitas, CA. He served as a dean of research affairs and a director of KI-IT convergence in KAIST. He is currently a director of millimeter wave radar-communication research center (MiraCom-RC) supported by Korean government. He is currently a member of IEEE, NAEK, KIEES and KITE. He has served as a board member of Techno-park of Daejeon Metropolitan city for 15 years. He served as general chair of RFIT 2017 supported by IEEE and TPC chairs of APMC 2013 and GSMM 2014. He published more than 300 technical papers and 150 patents. He is currently interested in RFICs and especially in millimeter wave Front-end ICs for 5G communications and intelligent high resolution radars.

Workshop 1: mm-wave/THz Integrated Beamforming Technologies Monday, 29-Aug, 09:30 – 10:10, Room: Forum 1

Chairs: Sanggeun Jeon, Korea University Minkyu Je, KAIST

M1W.1: Bi-Directional Doherty Phased-Array Transceiver for 5G and Beyond

Prof. Kenichi Okada, Tokyo Institute of Technology, Japan

Abstract: In this presentation, a 39-GHz CMOS phased-array beamformer with the bi-directional Doherty PA-LNA will be presented. A compact layout design and DPD is required for applying Doherty frontend to the phased array. The DPD is effective for improving linearity while it suffers from PVT variation over the array elements. An inter-element mismatch compensation technique is introduced for improving the shared-LUT DPD performance over the PVT variations. A implementation results using 65nm CMOS will be introduced.

Biography: Prof. Kenichi Okada received the B.E., M.E., and Ph.D. degrees from Kyoto University, Kyoto, Japan, in 1998, 2000, and 2003, respectively. He joined Tokyo Institute of Technology in 2003,

and he is now Professor. He has authored and co-authored more than 500 journal and conference papers. His current research interests include millimeter-wave/terahertz wireless transceiver, digital PLL, and ultra-low-power RF circuits. He has worked as a TPC member of ISSCC, VLSI Circuits, and ESSCIRC, RFIC Symposium, A-SSCC, Guest Editors and Associate Editor of JSSC and T-MTT, a Distinguished Lecturer of SSCS.

Workshop 1: mm-wave/THz Integrated Beamforming Technologies Monday, 29-Aug, 10:10 – 10:50, Room: Forum 1

Chairs: Sanggeun Jeon, Korea University Minkyu Je, KAIST

M1W.2: Fast simultaneous calibration of integrated phased-array systems for 5G mm-Wave base station

Dr. Aoki Yuuichi, Samsung Electronics, Korea

Abstract: The 5G network introduces the new frequency bands in millimeter-wave (mmWave) frequency. The short wavelength of mmWave allows the use of the phased-array antenna (PAA), which allocates a large number of antenna elements in a small area. PAA steers the direction of the beam in a real time by changing the phase electrically and creates a directional beam focusing onto a specific user device. Recent commercial mmWave base stations have more than 1000 antenna elements and they need a calibration to obtain optimum array performance. Therefore, the allowable calibration time per antenna is very short. In this lecture, a fast PAA calibration using

an orthogonal code is introduced. The method can characterize all the array element simultaneously in a short time of measurement. Also, solutions to issues, e.g., the first row issue of Hadamard matrix, GPS synchronization issue, and a build-in-self-test configuration will be presented.

Biography: Yuuichi Aoki received the B.S. degree in electrical and computer engineering from Kanazawa University, Ishikawa, Japan, in 1996, and the M.S. degree in electrical and electronic engineering from Tokyo Institute of Technology, Tokyo, Japan, in 1998. He joined System Devices Research Laboratories of NEC Corporation in 1998 where he had been engaged in research and development of RFICs for wireless communications. He was an industrial resident in IMEC in 2005. He joined Communications Research Team of Samsung Electronics in 2011 where he is currently a principal engineer of Modem R&D group and has been engaged in research and development of RF and mmWave systems for 5G mobile communications. He has 20+ years of research experience and is a senior member of IEEE.

Workshop 1: mm-wave/THz Integrated Beamforming Technologies Monday, 29-Aug, 11:10 – 11:50, Room: Forum 1

Chairs: Sanggeun Jeon, Korea University Minkyu Je, KAIST

M1W.3: mmWave Metasurface-in-Package (MiP) for Spatially Tailored 5G/6G Connectivity

Prof. Jungsuek Oh, Seoul National University, Korea

Abstract: In the advanced 5G/6G communications, extreme wide bandwidth and RF energy-efficient connectivity is expected to survive under the harsh conditions of considerable channel attenuation and components/packaging losses. Accordingly, the range of the dominant connectivity technology in the commercialization domain is being extended from the conventional stochastic channel establishment and guided-wave based antenna packages to Metasurface and reconfigurable intelligent surface(RIS) based spatially tailored channel establishment and antenna packages.

In this talk, background/motivation and concept of the mmWave Metasurfaces for 5G/6G communications will be introduced in terms of both component and system aspects.

Then, several design examples and corresponding simulation/measurement results will be presented with the practical considerations such as fabrication process and integration scenarios.

Biography: Jungsuek Oh received his B.S. and M.S. degrees from Seoul National University, Korea, in 2002 and 2007, respectively, and a Ph.D. degree from the University of Michigan at Ann Arbor in 2012. From 2013 to 2015, he was a staff RF engineer with Samsung Research America, Dallas, working as a project leader for 5G/millimeter-wave antenna systems.

He is currently an Associate Professor in the Department of Electrical and Computer Engineering, Seoul National University, South Korea. His research areas include mmWave Metasurface/Lens beam focusing/shaping techniques, antenna/RF circuit miniaturization for integrated systems, and radio propagation modeling for complex scenarios. He is the recipient of the 2011 Rackham Predoctoral Fellowship Award, 2014 Samsung DMC Innovation Award, and 2018 SNU Creative-Pioneering Researcher Award. He has served as an Editor-in-Chief for JEES (SCIE) and an Associate Editor for MOTL (SCIE) and ICT Express (SCIE), and so on. He has served as a TPC member for numerous conferences such as IEEE AP-S/USNC-URSI, ISAP, and KIEES where his group has been awarded honorably. His group members were also awarded for Industry Best Paper Award from Samsung Electro-Mechanics and Samsung Research. He has been a senior member of IEEE since 2017.

Workshop 1: mm-wave/THz Integrated Beamforming Technologies Monday, 29-Aug, 11:50 – 12:30, Room: Forum 1

Chairs: Sanggeun Jeon, Korea University Minkyu Je, KAIST

M1W.4: Phased Array for mm-wave 5G and 6G LEO Satellite Communications

Dr. Jinseok Park, ETRI, Korea

Abstract: Phased arrays have become a key technique in various fields. In particular, CMOS-based beamforming ICs have attracted much attention due to their high-level integration and low cost. In this talk, two CMOS beamforming front-end ICs for mmWave 5G and LEO satellite communications will be introduced.

The beamforming front-end IC must be both compact and power efficient. Also, high-resolution and high-accurate phase and gain controls are essential not only for controlling the beams precisely but also for error corrections. In addition, because digital predistortion linearization techniques of a PA are not easily applicable to the phased array system due to its multiple PAs and high bandwidth signals, analog linearization techniques must be adopted for CMOS PAs. As a solution for the challenges, a variable gain phase shifter (VGPS) using dual-vector

synthesis technique is reported, which achieves an inherently orthogonal phase and gain controls in a single block. This greatly reduces chip size, power consumption, and calibration complexity. Also, an analog linearization technique, which improves both AM-AM and AM-PM distortion of a PA, is introduced. A scalable 64-element brick-type phased-array module based on 4-channel core chips with the VGPS and PA linearizer will be presented.

Biography: Jinseok Park received the M.S. and Ph.D. degrees in electrical engineering from Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea, in 2016 and 2021, respectively. He is currently a senior researcher with Electronics and Telecommunications Research Institute (ETRI), Daejeon, South Korea, where he is involved in the development of RFIC and phased-array systems for LEO satellite communication. His current research interests include millimeter-wave integrated circuits for next-generation satellite payloads, and phased-array systems for high-data-rate wireless communications. Dr. Park was a recipient of a Grand Prize in the 25th Human-Tech Paper Award hosted by Samsung Electronics in 2019, and a Prime Minister Award of the Republic of Korea in the Korea Semiconductor Design Competition in 2020. He holds over 20 patents related to phased-array systems and ICs. His research result was selected as one of Top Ten Innovative Patents of KAIST in 2017.

Workshop 2: RF Technologies for Emerging Biomedical Applications Monday, 29-Aug, 13:30 – 14:10, Room: Forum 1

Chairs: Minkyu Je, KAIST Sanggeun Jeon, Korea University

M2W.1: Magnetoelectrically Powered and Controlled Millimetric Bioelectronic Implants

Prof. Kaiyuan Yang, Rice University, USA

Abstract: Millimeter-scale bioelectronic implants promise transformative applications in medicine, health, and scientific research. This talk will focus on unconventional hardware challenges and solutions towards next generation biomedical implants with unprecedented power, volume, and wireless requirements. Specifically, I will introduce our latest progresses on building safe and reliable multi-site networked millimetric bio implants, including magnetoelectric wireless power transfer and communication, multi-access communication, PUFbased device addressing and security, and system integration and validation.

Biography: Kaiyuan Yang is currently an Assistant Professor of ECE at Rice University, USA. He received his B.S. degree in Electronic Engineering from Tsinghua

University, China, in 2012, and his Ph.D. degree in Electrical Engineering from the University of Michigan, Ann Arbor, MI, in 2017. His research interests include digital and mixed-signal circuits for secure and intelligent microsystems, bioelectronics, and hardware security. Dr. Yang is a recipient of the 2022 National Science Foundation (NSF) CAREER award, 2016 IEEE Solid-State Circuits Society (SSCS) Predoctoral Achievement Award, and multiple best paper awards from top-tier conferences in various fields, including 2021 IEEE Custom Integrated Circuit Conference (CICC), 2016 IEEE Symposium on Security and Privacy (Oakland), 2015 IEEE International Symposium on Circuits and Systems (ISCAS), and the Best Student Paper Award finalist at 2022 RFIC and 2019 CICC.

Workshop 2: RF Technologies for Emerging Biomedical Applications Monday, 29-Aug, 14:10 – 14:50, Room: Forum 1

Chairs: Minkyu Je, KAIST Sanggeun Jeon, Korea University

M2W.2: Body-Coupled Data and Power Transmission for Wireless Neural Implants

Prof. Joonsung Bae, Kangwon National University, Korea

Abstract: Miniaturized neural implants for monitoring neurological disorders have been investigated as a promising alternative to the neural interface for patients. However, such implants rely on physical tethers to external hardware for data and power transmission, which not only causes tissue damage and infection but also hinders stablein-vivorecordings. To enable non-tethered implants, a key feature for the robust and high-fidelity neural interface, neural implants using various wireless technologies have been reported. However, the use of an inductive link imposes a stringent requirement on the alignments between coils with a limited transfer range. Optical and ultrasound telemetry suffer from attenuation from skull absorption, which requires surgically placed subcranial repeater or has only been demonstrated at low data

rates (tens of kbps). Hence, they are limited to the short operation range and the susceptibility to orientation. In contrast, body-coupled communication (BCC) and body-coupled power delivery have been reported for wearable devices, each of which uses the body as a data/power delivery channel. The unique property of body-coupled schemes does not require precise alignments between devices and still ensures data/power delivery. In this presentation, a miniaturized wireless neural implant is presented that uses both body-coupled data transmission and power delivery. The implant only needs small electrodes for data transmission and power delivery, and external devices with patch electrodes can be placed far away from the implant, e.g., in the back of the rat and this facilitates stable chronicin-vivorecordings in freely behaving animals.

Biography: Joonsung Bae graduated from the Electrical Engineering Department of Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea, in 2007 and received the M.S. and Ph.D. degrees in electrical engineering from the KAIST in 2009 and 2013, respectively. His Ph.D. work concerned the Wireless Body Area Network (WBAN) circuits and systems. Since 2017, he has been with the Department of Electrical and Electronics Engineering, Kangwon National University, where he is currently an Assistant Professor. From 2013 to 2014, he was with the Memory Business of Samsung Electronics, Korea, where he developed the SoC Design for the SSD (Solid-State Drive) and UFS (Universal Flash Storage). As a Senior Engineer, he designed the integrated circuits for PCI-Express 3.0 and M-PHY 3.0. In 2014, he joined the Information and Electronics Research Institute of KAIST as a Postdoctoral Researcher. Before joining Kangwon National University, he was an Analog Circuit Designer with IMEC, Belgium, where he investigated ultra-low-power biomedical circuits. His current research interests are energy-efficient mixed-signal circuits and systems, wireless neural interfaces, bio-medical integrated sensors, and body area networks.

Workshop 2: RF Technologies for Emerging Biomedical Applications Monday, 29-Aug, 15:10 – 15:50, Room: Forum 1

Chairs: Minkyu Je, KAIST Sanggeun Jeon, Korea University

M2W.3: Smaller in Volume, Larger in Throughput: Wireless Solutions in Biomedical Application

Dr. Minyoung Song, imec, Netherlands

Abstract: By virtue of the rapid evolution of integrated circuit technologies in recent decades, the quality of services and equipment for biomedicine and healthcare has been dramatically improved. As a clear example, wireless medical implants reform existing medical treatment and diagnosis, in terms of patient comfort, safety, and flexibility. One of the technical trends in wireless medical implant design is miniaturization. It allows more freedom in implantation into the body, in terms of location, non-/less-invasiveness, etc. Such miniaturization is promising but still challenging in the wireless system. Another technical trend in the wireless implant is to facilitate the high data transfer while covering the longer communication range to convey more sensor data from the implant. This presentation

discusses some of the technical challenges and future trends in miniaturization and the high data rate communication of wireless medical implants.

Biography: Minyoung Song is senior researcher at imec and has led analog frontend designs for ultralow power wireless systems for automotive, IoT and biomedical applications. He has been with imec, since 2016, after working with Samsung Electronics. He has developed ultra-low-power wireless solutions for BLE, Wi-Fi, MedRadio, and UWB. He received the B.S. and Ph. D. degrees in electrical engineering from Korea University, Seoul, Korea, in 2006 and 2013, respectively. His current research interests are ultra-low-power wireless solutions for IoT/Biomedical applications, and frequency synthesizers/clock generators.

Workshop 2: RF Technologies for Emerging Biomedical Applications Monday, 29-Aug, 15:50 – 16:30, Room: Forum 1

Chairs: Minkyu Je, KAIST Sanggeun Jeon, Korea University

M2W.4: Wireless and Free Floating Micromotes for Chronic Neural Recording

Dr. Prof. Taekwang Jang, ETH Zürich, Switzerland

Abstract: Brain-machine interface (BMI) has the potential to treat many brain disorders and to restore motor function for people who are paralyzed or amputated. Promising system level implementations with high channel counts have been introduced to record and decode the complex neural signals. However, such implantable systems are typically tethered with an array of wires for power and data communications, increasing risks of tissue damage and infection and rendering these devices unsuitable for chronic neural recording. To address this challenge, wireless and free floating micromotes have been proposed by adopting power and data telemetry through RF and infrared light. In this talk, based on the recent publications, I will introduce 200µmscale neural recording integrated circuits for the motorfunction restoration. An energy efficient neural amplifier, clock-and-data recovery circuits and random chip-ID generator are implemented for the ultra-low power signal acquisition and communication. The systems also include a

neural feature extraction circuits to reduce the data bandwidth while achieving the state-of-the-art finger position decoding accuracy of 0.85 correlation factor.

Biography: Taekwang Jang is currently an assistant professor at the ETH Zürich, Switzerland. He received his B.S. and M.S. in electrical engineering from the Korea Advanced Institute of Science and Technology, Korea, in 2006 and 2008, respectively. From 2008 to 2013, he worked at Samsung Electronics Company Ltd., Yongin, Korea, focusing on mixed-signal circuit design, including analog and all-digital phase-locked loops for communication systems and mobile processors fabricated in 20-45nm CMOS processes. In 2017, he received his Ph.D. from the University of Michigan; his dissertation was titled "Circuit and System Designs for Millimeter-Scale IoT and Wireless Neural Recording." After working as a post-doctoral research fellow at the University of Michigan for one year, he joined the ETH Zürich in 2018 as an assistant professor, and he is leading the Energy-Efficient Circuits and IoT Systems group. He is also a member of the Competence Center for Rehabilitation Engineering and Science and the chair of the IEEE Solid-State Circuits Society, Switzerland Chapter. His research focuses on circuits and systems for highly energy-constrained applications such as wireless sensor nodes and biomedical interfaces. Essential building blocks such as a sensor interface, energy harvester, power converter, communication transceiver, frequency synthesizer, and data converters are his primary interests. He holds 14 patents and has (co)authored more than 60 peerreviewed conferences and journal articles. He is the recipient of the 2021 IEEE ISSCC Jan Van Vessem Award for Outstanding European Paper and the 2009 IEEE CAS Guillemin-Cauer Best Paper Award. Since 2022, he has been a TPC member of the IEEE International Solid-State Circuits Conference (ISSCC), IMMD Subcommittee, and IEEE Asian Solid-State Circuits Conference (ASSCC), Analog Subcommittee. In addition, he served as the chair of the 2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Frequency Generation Subcommittee.

RFIT Student Paper Competition

Student Paper Competition Tuesday, 30-Aug, 15:10 – 16:20, Room: Vernazza

Chair: Jong-Ryul Yang, Yeungnam University

Student Paper Competition aims to encourage students to experiment RFIT technologies and to achieve innovative results in this symposium. Students who submitted papers have the opportunity to challenge this Competition. A total of 23 authors applied for the student paper award competition in the paper submissions. In the written evaluation, each paper was strictly reviewed by three reviewers. The Award Committee selected 11 finalist papers below out of the 23 papers based on their review scores. For presentation evaluation, the finalists are requested to present their research results during the Competition. They will have an in depth interaction with the Award Committee. The Committee will evaluate their originality, concept feasibility, material preparation, and communication skills. Award winners will receive cash prizes and award certificates.

List of Finalist Papers

- **T3A.3** An Ultra-Compact Bidirectional Ka-Band Front-End Module With 4.0-dB NF and 13.5dBm OP1dB *Jian Zhang, Wei Zhu, Ruitao Wang, Chenguang Li, Sen Yin and Yan Wang (Tsinghua University, China)*
- **T3A.4** 25-31-GHz Low Noise Amplifiers in 0.15-μm GaN/SiC HEMT Process *Shih-Yun Chen (National Taiwan University, Taiwan)*
- **T4F.7** A High Gain Vector-Sum Phase Shifter in 28nm CMOS for 5G Communication Jinhyun Kim (Seoul National University, Korea (South)); Seongwoog Oh (Seoul National University & Institute New Media and Communications (INMC), Korea (South)); Jungsuek Oh (Seoul National University, Korea)
- **T4F.8**A 28-GHz Low Insertion Loss Variation 4-Bit Phase Shifter
Juwon Kim and Byung-Wook Min (Yonsei University, Korea (South))
- **T4F.9** 29-To-65-GHz CMOS Amplifier With Tunable Frequency Response Shunsuke Yabuki, Shinichiro Fujimoto, Shuhei Amakawa, Takeshi Yoshida and Minoru Fujishima (Hiroshima University, Japan)
- W1B.1 Sensor-Integrated RIS Unit Element Featuring Mutual Coupling Reduction Myeonggin Hwang, Youngno Youn, Suho Chang, Daehyeon Kim, Cheonga Lee and Donggeun An (Pohang University of Science and Technology, Korea (South)); Wonbin Hong (Pohang University of Science and Technology (POSTECH), Korea (South))
- **W1B.2** Reconfigurable Metasurface With an Intermediate Phase Shift Scheme for Beam Steering Sebastian Johan Verho, Van Thang Nguyen, Philip A. Dzagbletey and Jae-Young Chung (Seoul National University of Science and Technology, Korea (South))

RFIT Student Paper Competition

- W1B.4 Design of Chip Integrated Circularly Polarized Phased Array System Jeong-Wook Kim (KAIST, Korea (South)); Sol Kim (Korea Advanced Institute Science and Technology(KAIST), Korea (South)); Hyunyoung Cho (KAIST, Korea (South)); Soo-Chang Chae (Korea Electronics Technology Institute, Korea (South)); ByungKuon Ahn and Jong-Won Yu (KAIST, Korea (South))
- W3A.2 A D-Band Variable-Gain LNA With Triple-Inductive Coupling Gm-Boosting Ilgwon Kim (KAIST, Korea (South)); Songcheol Hong (IEEE, USA); Wansik Kim (LIG NEX1, Korea (South))
- W4B.3 Compact Concentric Antenna Module Integrated With Coplanar T/Rx Array and Multi-Channel CMOS Radar IC JiHo Lee, Hyun-Jun Dong, Hakmin Lee and Woo Hee Lim (Chung-Ang University, Korea (South)); Donghyun Baek (Chung-ang University, Korea (South)); Han Lim Lee (Chung-Ang University, Korea (South))
- **W4B.4** Frequency Discrimination Based on the Different Number of Peaks in Envelope Detection of Two-Tone CW Radar Jae Young Sim and Jong-Ryul Yang (Yeungnam University, Korea (South))

Social Events

Welcome Reception

Monday, August 29 at 5 p.m. @ Vernazza, 3F

We will welcome anyone who attends the symposium to the Welcome Reception; workshop applicants, accompanying persons, exhibitors, or symposium attendees. You can explore the symposium venue, enjoy ice breaking freely with newcomers. We will offer you light meals and refreshments.

Symposium Banquet

Tuesday, August 30 at 6:30 p.m. @ Monterosso, B1

Regular registrants are invited to attend the banquet. A banquet performance will liven up the mood after having a gala dinner. Also, the award ceremony will take place at the banquet. Award winners will be invited to the banquet, where the General Chair will present a certificate of best paper award and a cash prize at the ceremony. Additional banquet is available at \$80 (KRW 90,000).

Luncheons

Monday, August 29 from 12:30 p.m. to 1:30 p.m. @ Cafeteria, 2F Tuesday, August 30 from 12:10 p.m. to 1:30 p.m. @ Cafeteria, 2F Wednesday, August 31 from 12 p.m. to 1:30 p.m. @ Cafeteria, 2F

We will offer all participants lunches during the symposium. Please take on your name badge to enter the cafeteria for lunch meals.

Floor Map

Understanding Session Code

Each session in the technical program is assigned a unique number which clearly indicates when and how the paper is presented. A typical number is shown below:

Typical Session Number: T1A.2

The first letter (i.e. T) indicates the day of the symposium.

M = Monday

T = Tuesday

W = Wednesday

The second number (i.e. 1) indicates the time of the day.

- 1 = the first time
- 2 = the second time
- **3** = the third time
- 4 = the fourth time
- **5** = the fifth time

The third letter (i.e. A) shows the presentation type.

A / B = Oral

- P = Plenary
- F = Poster
- W = Workshop

The fourth number (i.e. 2) shows the presentation order in the session.

- 1 = the first presentation
- 2 = the second presentation
- 3 = the third presentation
- **4** = the fourth presentation
- **5** = the fifth presentation

Technical Program Details

- Tuesday 30 August (D2)

- Wednesday 31 August (D3)

T1A: Microwave/mm-Wave Frequency Synthesis

09:00 - 10:20, Tuesday 30-Aug, Room: Forum 1

Chairs: Jong-Ryul Yang, Yeungnam University Heein Yoon, UNIST

T1A.1 Invited 09:00 – 09:20	Reference Oversampling Phase-Locked Loops for Achieving Low Jitter, Spur, and Power Consumption Taekwang Jang (ETH Zürich, Switzerland)
T1A.2 Invited 09:20 – 09:40	An Ultra-Low Integrated-Phase-Noise 28-GHz LO Generator for 5G Transceivers Supporting Multiple Frequency Bands Heein Yoon (UNIST, Korea (South)); Suneui Park, Juyeop Kim and Jaehyouk Choi (KAIST, Korea (South))
T1A.3 Invited 09:40 – 10:00	An 84-GHz CMOS Injection-Locked Frequency Multiplier With Phase Tuning Control Chien-Nan Kuo and Wei-Chien Wang (National Yang Ming Chiao Tung University, Taiwan)
T1A.4 Invited 10:00 – 10:20	Microwave and Millimeter-Wave Signal Generation Using Injection Locked Technique Hong-Yeh Chang (National Central University, Taiwan)

T1B: Power Amplifiers for 5G Applications

09:00 – 10:20, Tuesday, 30-Aug, Room: Vernazza

Chairs: Hyunchul Park, Samsung Electronics Jusung Kim, Hanbat National University

T1B.1 Invited 09:00 – 09:20	23-28 GHz Doherty Power Amplifier Using 28 nm CMOS for 5G Applications Young Chan Choi (Sungkyunkwan University, Korea (South)); Sungjae Oh (Samsung Electronics Ltd., Korea (South)); Youngoo Yang (Sungkyunkwan University, Korea (South))
T1B.2 Invited 09:20 – 09:40	A Compact Broadband Power Amplifier Covering 23-39 GHz for 5G Mobile Communication Chenguang Li, Ruitao Wang, Jian Zhang, Wei Zhu and Yan Wang (Tsinghua University, China)
T1B.3 Invited 09:40 – 10:00	Two-Stage CMOS/GaAs HBT Doherty Power Amplifier Module for 5G Handsets Hyeongjin Jeon and Jongyun Na (Sungkyunkwan University, Korea (South)); Hansik Oh (Samsung Electronics, Korea (South)); Youngoo Yang (Sungkyunkwan University, Korea (South))
T1B.4 Invited 10:00 – 10:20	Power Combining Configurations of HPUE PA for 5G Mobile Phone Applications Satoshi Tanaka and Hiroshi Okabe (Murata Manufacturing Co., Ltd., Japan)

T3A: mm-Wave/THz Building Blocks

13:30 – 15:10, Tuesday 30-Aug, Room: Forum 1

Chairs: Munkyo Seo, Sungkyunkwan University Donggu Im, Jeonbuk National University

T3A.1 Invited 13:30 – 13:50	Multiplexing Schemes for Sub-THz/THz Interconnects Xuan Ding, Bo Yu, Hai Yu, Sajjad Saber and Jane Gu (University of California Davis, USA)
T3A.2 Invited 13:50 – 14:10	Design of Frequency-Reconfigurable Filtering Phase Shifter Based on Controllable Mixed Electric-Magnetic Coupling Tao Yang (University of Electronic Science and Technology of China, China)
T3A.3 14:10 – 14:30	An Ultra-Compact Bidirectional Ka-Band Front-End Module With 4.0-dB NF and 13.5-dBm OP1dB Jian Zhang, Wei Zhu, Ruitao Wang, Chenguang Li, Sen Yin and Yan Wang (Tsinghua University, China)
T3A.4 14:30 – 14:50	25-31-GHz Low Noise Amplifiers in 0.15-µm GaN/SiC HEMT Process Shih-Yun Chen (National Taiwan University, Taiwan)
T3A.5 14:50 – 15:10	An E-Band Built-In Self-Tester Detectable Active Reflection Coefficient for Millimeter-Wave Beamforming Transmitters Seung-Uk Choi (Pohang University of Science and Technology, Korea (South)); Kyunghwan Kim (Pohang University of Science and Technology (POSTECH), Korea (South)); Kangseop Lee, Seunghoon Lee and Ho-Jin Song (POSTECH, Korea (South))

T3B: Advanced Circuit and System Designs

13:30 – 15:10, Tuesday, 30-Aug, Room: Vernazza

Chairs: Sang-Gyu Park, Hanyang University Young-Ha Hwang, Soongsil University

T3B.1 Invited 13:30 – 13:50	An Energy-Efficient Supply- and Temperature-Independent ΔΣ Capacitance- To-Digital Converter Junghyup Lee (DGIST, Korea (South))
T3B.2 Invited 13:50 – 14:10	Number of Oscillation Cycles (NOC): A New Paradigm for VCO-Based Comparison Qiang Li (University of Electronic Science and Technology of China, China)
T3B.3 Invited 14:10 – 14:30	Tabbed Routing Modeling and Design Optimization for High-Speed Signaling Channel Kyunghwan Song (Korea Advanced Institute of Science and Technology, Korea (South)); Seonghi Lee (KAIST, Korea (South)); Seungyoung Ahn (Korea Advanced Institute of Science and Technology, Korea (South))
T3B.4 14:30 – 14:50	A Refined Skew Matrix Model of the CIM3 in the Up-Mixer Extending the Duality of I/Q Imbalance Ealwan Lee (GCT Semiconductor, Inc., Korea (South))
T3B.5 Invited 14:50 - 15:10	Body-Coupled Powering for Wearables Jiamin Li (National University of Singapore, Singapore); Jerald Yoo (National University of Singapore & The N1 Institute for Health, Singapore)

T4F: Interactive Forum

15:10 - 16:20, Tuesday, 30-Aug, Room: Forum 2

Chair: Jong-Ryul Yang, Yeungnam University

T4F.1	A 350-GHz Fundamental-Mode Common-Base Cross-Coupled Oscillator in 130-nm InP HBT Technology
	Heekang Son, Junghwan Yoo and Jae-Sung Rieh (Korea University, Korea (South))
T4F.2	A High PAE Stacked K-Band Power Amplifier Using π -Phase Compensation Technique
	Omar Alngar, Adel Barakat and Ramesh K. Pokharel (Kyushu University, Japan)
T4F.3	Differential HPUE PA for n77 Band With a Cross-Coupled Feed-Forward Gain Control Circuits
	Hideyuki Sato, Satoshi Tanaka, Yuuri Honda, Masafumi Kazuno, Kenji Mukai, Yusuke Tanaka, and Hiroshi Okabe (Murata Manufacturing Co., Ltd., Japan)
T4F.4	26 GHz 2-Stacked Power Amplifier Using 28 nm Bulk CMOS
	Soohyun Bin, Young Chan Choi and Youngoo Yang (Sungkyunkwan University, Korea (South))
T4F.5	900 MHz Differential Power Amplifier IC Using 55 nm CMOS Technology
	and Youngoo Yang (Sungkyunkwan University, Korea (South))
T4F.6	A 4-9 GHz Reconfigurable Differential Power Combiner/Splitter in 65nm CMOS
	Haipeng Duan, Qin Chen and Xu Wu (Southeast University, China); Dongming
	China); Lianming Li (National Mobile Communications Research Lab., China)
T4F.7	A High Gain Vector-Sum Phase Shifter in 28nm CMOS for 5G Communication
	Jinhyun Kim (Seoul National University, Korea (South)); Seongwoog Oh (Seoul National University & Institute New Media and Communications (INMC)
	Korea (South)); Jungsuek Oh (Seoul National University, Korea (South))
T4F.8	A 28-GHz Low Insertion Loss Variation 4-Bit Phase Shifter
	Juwon Kim and Byung-Wook Min (Yonsei University, Korea (South))
T4F.9	29-To-65-GHz CMOS Amplifier With Tunable Frequency Response
	Shunsuke Yabuki, Shinichiro Fujimoto, Shuhei Amakawa, Takeshi Yoshida and Minoru Fujishima (Hiroshima University, Japan)

T4F: Interactive Forum

15:10 - 16:20, Tuesday, 30-Aug, Room: Forum 2

T4F.10	An E-Band Direct Conversion Transmitter With I/Q Calibration Seunghoon Lee (POSTECH, Korea (South)); Kyunghwan Kim (Pohang University of Science and Technology (POSTECH), Korea (South)); Kangseop Lee and Ho-Jin Song (POSTECH, Korea (South))
T4F.11	150-GHz Vector Modulator Phase Shifter in 65-nm CMOS Ju-Hyeon Park, Ui-Gyu Choi and Jong-Ryul Yang (Yeungnam University, Korea (South))
T4F.12	A Switchless Bidirectional Distributed Amplifier With 2-dB Gain Variation in One Decade Frequency Range in 90-nm CMOS Process Wei Hsuan Tsai, Yunshan Wang and Huei Wang (National Taiwan University, Taiwan)
T4F.13	A 19 GHz 5-Bit Low RMS Phase Error Passive Phase Shifter Using 0.18 μm CMOS Process Jeng-Han Tsai, Ying-Chen Chang and Pin-Jung Chen (National Taiwan Normal University, Taiwan)
T4F.14	A Study of K-Band Gain-Boosted Amplifier Using Inductor Coupling Yuki Hayashi, Nobuyuki Itoh and Kiyotaka Komoku (Okayama Prefectural University, Japan)
T4F.15	Design of Diplexer-Matching Dual-Band Active Load Mixer With Master-Slave IF Active Filter Wen Cheng Lai (National Taiwan University of Science and Technology, Taiwan)
T4F.16	Design of a Coplanar Waveguide for X-Band Radar Antenna Elements Jeongmin Cho (University of Hongik, Korea (South)); Doyoung Jang (Hongik University, Korea (South), Korea (South)); Chang-Hyun Lee and Hyun Kim (LIG Nex1 Company Ltd., Korea (South)); Hosung Choo (Hongik University, Korea (South))
T4F.17	Design of a High-Gain Antipodal Vivaldi Antenna Using Periodic Diagonal Slots and an Elliptical Director for Microwave Power Transmission Systems Sungsik Ohm and Eunjung Kang (Hongik University, Korea (South)); Chulhun Seo (Soongsil University, Korea (South)); Hosung Choo (Hongik University, Korea (South))

T4F: Interactive Forum

15:10 - 16:20, Tuesday, 30-Aug, Room: Forum 2

T4F.18	Modeling of Hot-Via Technology for System-In-Package at Millimeter-Wave
	Yi-Fan Tsao and Yuan Wang (National Yang Ming Chiao Tung University, Taiwan); Serguei Chevtchenko (Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Germany); Mihaela Wolf (Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik, Germany); Joachim. Wuerfl (Ferdinand-Braun-Institut, Germany); Heng-Tung Hsu (National Chiao Tung University & International College of Semiconductor Technology, Taiwan)
T4F.19	Grating Lobe Suppression in Wide-Angle Scanning Phased Array With Large Inter Element Spacing by Subarray Rotation Hyunyoung Cho and Jeong-Wook Kim (KAIST, Korea (South)); Sol Kim and Ji- Hoon Lee (Korea Advanced Institute Science and Technology(KAIST), Korea (South)); Ju-Ik Oh and Jong-Won Yu (KAIST, Korea (South))
T4F.20	An Accurate and Instantaneous Permittivity Measurement Using Modified Multi-Line Method
	Junhyuk Ahn, Myeonggin Hwang and Youngno Youn (Pohang University of Science and Technology, Korea (South)); Wonbin Hong (Pohang University of Science and Technology (POSTECH), Korea (South))
T4F.21	Circularly Polarized High-Gain Patch Antenna Using Higher-Order Mode for GPS Applications
	Eunjung Kang and Hosung Choo (Hongik University, Korea (South))
T4F.22	Frequency Tunable Microstrip Patch Antenna Based on Liquid Crystal at Millimeter-Wave Band
	Jinki Park, Ye-Eun Chi and Seong-Ook Park (Korea Advanced Institute of Science and Technology, Korea (South))
T4F.23	Sub-Terahertz Electromagnetic-Wave Absorber for Future Wireless Communication
	Sangyeop Lee (Tokyo Institute of Technology, Japan); Masao Fujita and
	Masayuki Toyoda (Maxell, Ltd., Japan); Kyoya Takano (Tokyo University of
	Science, Japan); Shinsuke Hara (National Institute of Information and Communications Technology, Japan): Issei Watanabe (National Institute of
	Infomation and Communications Technology, Japan); Akifumi Kasamatsu
	(National Institute of Information and Communications Technology, Japan);
	Hiroyuki Ito (Tokyo Institute of Technology, Japan)
T4F.24	Design of Power Detector for mm-Wave Beamforming Systems
	Soo-Chang Chae, Chung-Geun Jang, Soo-Jeong Kim, Ki-Jin Kim and Kwang-Ho
	Ahn (Korea Electronics Technology Institute, Korea (South))

T4F: Interactive Forum

15:10 - 16:20, Tuesday, 30-Aug, Room: Forum 2

T4F.25	Evaluation of Partial Denture Management RFID System Using a Simple Phantom Model
	Yuji Takatera, Eisai Nagahari and Bowen Dang (Tohoku University, Japan);
	Mizuki Motovoshi (Shizuoka Institute of Science and Technology, Japan);
	Junyi Xu (Tohoku University, Japan); Hiroyasu Sato (Tohouku University,
	Japan); Qiang Chen and Noriharu Suematsu (Tohoku University, Japan)
T4F.26	Study of an Atmospheric Refractivity Estimation Using AREPS and Genetic Algorithm
	Doyoung Jang (Hongik University, Korea (South), Korea (South)); Jongmann Kim
	(Yonsei University & ADD, Korea (South)); Yong Bae Park (Ajou University, Korea
	(South)); Hosung Choo (Hongik University, Korea (South))
T4F.27	Fast Anomaly Detection via the Orthogonality Sampling Method in Microwave Imaging
	Sangwoo Kang (KAIST, Korea (South)); Seongje Chae and Won-Kwang Park
	(Kookmin University, Korea (South))
T4F.28	Vital Signal Detection for Continuous-Wave Radar Sensor Using Compensation Technique
	Ah-Jung Jang, In-Seong Lee, Jae Young Sim and Jong-Ryul Yang (Yeungnam
	University, Korea (South))
T4F.29	Cooperative Microwave Power Transfer Using Beam Scanning Scheme
	Minjae Ahn and Hyunchul Ku (Konkuk University, Korea (South))
T4F.30	Correction of Multilayer Semiconductor Process Parameters for
	Electromagnetic Field Analysis in the 300-GHz Band
	Rion Shinya (Tokyo University of Science, Japan); Shinsuke Hara and Akifumi
	Kasamatsu (National Institute of Information and Communications
	Technology, Japan); Yontaro Umeda and Kyoya Takano (Tokyo University of Science, Japan)
T4F.31	Optimization of Deep Learning-Based BSIM-CMG I-V Parameter Extraction in Seconds
	Fredo P Chavez (Macquarie University, Australia); Ming-Yen Kao (University
	of California Berkeley, Berkeley, US, USA); Chenming Hu (University of
	California Berkeley USA, USA); Sourabh Khandelwal (Macquarie University, Australia)

T5A: Technologies for mm-wave/THz Circuits and Systems

16:20 – 18:00, Tuesday, 30-Aug, Room: Forum 1

Chairs: Myounggon Kang, Korea National University of Transportation Byung-Wook Min, Yonsei University

T5A.1 Invited 16:20 – 16:40	SiGe BiCMOS Technology With Advanced Integration Solutions for mm- Wave and THz Applications Mehmet Kaynak (IHP, Germany & IHP Microelectronics, Turkey)
T5A.2 Invited 16:40 – 17:00	A Compact and Low-Cost THz SoP Heterogeneous Integration Platform Chun-Hsing Li (National Taiwan University, Taiwan); Te-Yen Chiu (National Tsing Hua University, Taiwan)
T5A.3 17:00 – 17:20	Investigation of BEoL Integrated Ferroelectric Thin-Film HfO2 for mmWave Varactor Applications Sukhrob Abdulazhanov and Dang Khoa Huynh (Fraunhofer IPMS, Germany); Quang Huy Le (Fraunhofer IPMS & Brandenburg University of Technology, Germany); David Lehninger and Thomas Kämpfe (Fraunhofer IPMS, Germany); Gerald Gerlach (Technische Universität Dresden, Germany)
T5A.4 17:20 – 17:40	Design of Wideband CMOS ESD Protection Circuit Using Mutually Coupled Inductor Hyungeun Kim (Sogang University, Korea (South)); Jaehoon Jeong (Sogang University, Korea, Korea (South)); Jinho Jeong (Sogang University, Korea (South))
T5A.5 Invited 17:40 – 18:00	Chip-Level High-Frequency EMC Strategies and Measurement Techniques Yin-Cheng Chang (Taiwan Semiconductor Research Institute, NARLabs, Taiwan); Ping-Yi Wang (National Tsing Hua University, Taiwan); Ta-Yeh Lin and Chaoping Hsieh (Taiwan Semiconductor Research Institute, National Applied Research Laboratories, Taiwan); Da-Chiang Chang (Chip Implementation Center, National Applied Research Laboratories, Taiwan); Shawn S. H. Hsu (National Tsing Hua University, Taiwan)

T5B: Wireless Power Transfer and Power Management

16:20 – 18:00, Tuesday 30-Aug, Room: Vernazza

Chairs: Franklin Bien, UNIST

Hyungho Ko, Chung Nam University

T5B.1 Invited 16:20 – 16:40	Wireless Powering and Communication With Miniaturized Implantable Devices Sanghoek Kim (Kyung Hee University, Korea (South))
T5B.2 Invited 16:40 – 17:00	Duty-Cycled Wireless Power Transfer for Biomedical Implants Muhammad Abrar Akram (New York University Abu Dhabi, Abu Dhabi, UAE, United Arab Emirates); Kai-Wen Yang (Johns Hopkins University, USA); Sohmyung Ha (New York University Abu Dhabi, United Arab Emirates)
T5B.3 17:00 – 17:20	An 87% Efficient Wireless Powered System Using Adaptively Controlled Active Rectifier for Smart Electronics Chamith Chandrarathna Seneke Ralalage (Kyung Hee University, School of Electronics and Information, Korea (South))
T5B.4 Invited 17:20 – 17:40	Research of Dual-Path DC-DC Power Converter Se-Un Shin (UNIST, Korea (South))
T5B.5 Invited 17:40 – 18:00	3D-Integrated Beyond-10MHz Buck Converter With Fe-Based Metal Composite Magnetic Core Inductor <i>Kousuke Miyaji (Shinshu University, Japan); Makoto Sonehara (Shinshu</i> <i>University & Faculty of Engineering, Japan); Toshiro Sato (Shinshu</i> <i>University, Japan)</i>

W1A: mm-Wave/THz Signal Generation

09:00 - 10:20, Wednesday, 31-Aug, Room: Forum 1

Chairs: Woo-Seok Choi, Seoul National University Jong-Ryul Yang, Yeungnam University

W1A.1 Invited 09:00 – 09:20	Progress in Silicon Based Millimeter-Wave and THz Signal Sources Zhe Chen (Southeast University, China); Peigen Zhou (Southeast University & State Key Laboratory of Millimeter Wave, China); Rui Zhang, Jixin Chen, Pinpin Yan, Debin Hou and Wei Hong (Southeast University, China)
W1A.2 09:20 – 09:40	Triple-Push VCO With Robust Start-Up Using Tri-Core in CMOS for 6G Communication Seongwoog Oh (Seoul National University & Institute New Media and Communications (INMC), Korea (South)); Jungsuek Oh (Seoul National University, Korea (South))
W1A.3 Invited 09:40 – 10:00	Design of Waveguide-Based H-Band Source Module Using InP HBT Integrated Circuits Youngchae Jeon, Yeongmin Jang, Hyungeun Kim and Jinho Jeong (Sogang University, Korea (South))
W1A.4 Invited 10:00 – 10:20	A Compact Mm-Wave Multi-Band VCO Based on Triple-Mode Resonator for 5G and Beyond Mohammad Chahardori (Washington State University, USA); Md Aminul Hoque (Washington State University, India); Mohammad Ali Mokri and Deukhyoun Heo (Washington State University, USA)

W1B: Antennas and Metasurfaces

09:00 – 10:20, Wednesday, 31-Aug, Room: Vernazza

Chairs: Wonbin Hong, POSTECH Gangil Byun, UNIST

W1B.1 09:00 – 09:20	Sensor-Integrated RIS Unit Element Featuring Mutual Coupling Reduction Myeonggin Hwang, Youngno Youn, Suho Chang, Daehyeon Kim, Cheonga Lee and Donggeun An (Pohang University of Science and Technology, Korea (South)); Wonbin Hong (Pohang University of Science and Technology (POSTECH), Korea (South))
W1B.2 09:20 – 09:40	Reconfigurable Metasurface With an Intermediate Phase Shift Scheme for Beam Steering Sebastian Johan Verho, Van Thang Nguyen, Philip A. Dzagbletey and Jae- Young Chung (Seoul National University of Science and Technology, Korea (South))
W1B.3 09:40 - 10:00	100GHz-Band On-Chip 1x2 Phased Array Antenna Fed by Hybrid Coupler on 45nm CMOS SOI Jean Temga (Tohoku University & RIEC, Japan); Mizuki Motoyoshi (Shizuoka Institute of Science and Technology, Japan); Noriharu Suematsu (Tohoku University, Japan)
W1B.4 10:00 - 10:20	Design of Chip Integrated Circularly Polarized Phased Array System Jeong-Wook Kim (KAIST, Korea (South)); Sol Kim (Korea Advanced Institute Science and Technology(KAIST), Korea (South)); Hyunyoung Cho (KAIST, Korea (South)); Soo-Chang Chae (Korea Electronics Technology Institute, Korea (South)); ByungKuon Ahn and Jong-Won Yu (KAIST, Korea (South))

W2A: Advanced Power Amplifier Designs

10:40 - 12:00, Wednesday, 31-Aug, Room: Forum 1

Chairs: Ockgoo Lee, Pusan National University Sanggeun Jeon, Korea University

W2A.1 Invited 10:40 – 11:00	A 38 GHz Ultra-Compact High Power Density CMOS Power Amplifier Jeng-Han Tsai, Chun-Lin Chen and Chuan-Chi Hung (National Taiwan Normal University, Taiwan)
W2A.2 Invited 11:00 – 11:20	Deep Learning Enabled mmWave PA and Antenna Design Kaushik Sengupta, Zheng Liu and Emir Karahan (Princeton University, USA)
W2A.3 11:20 – 11:40	A 57-64 GHz Two-Way Parallel-Combined Power Amplifier With 16.6 dBm Psat and 23.6% Peak PAE in 40nm Bulk CMOS Junjie Gu, Haoqi Qin, Guixiang Jin and Hao Xu (Fudan University, China); Rui Yin and XiaoLiang Shen (National Integrated Circuit Innovation Center, China); Na Yan (State Key Lab of ASIC & System, Fudan University, China)
W2A.4 Invited 11:40 – 12:00	A Wideband E-Band Power Amplifier Utilizing Interstage Networks With Low-Coupling Transformers Jung-Dong Park and Van-Son Trinh (Dongguk University, Korea (South))

W2B: Passive Components

10:40 – 12:00, Wednesday, 31-Aug, Room: Vernazza

Chairs: Minkyu Je, KAIST

Sangkil Kim, Pusan National University

W2B.1 Invited 10:40 – 11:00	Spatial Separations of Multiple Harmonics Gangil Byun (Ulsan National Institute of Science and Technology (UNIST), Korea (South))
W2B.2 11:00 – 11:20	Multi-Beam Metasurface Scheme Using Polarization Matching for Improving Resource Efficiency Sol Kim (Korea Advanced Institute Science and Technology(KAIST), Korea (South)); Hyunyoung Cho, Jeong-Wook Kim, Hyo-Won Lee and Jong-Won Yu (KAIST, Korea (South))
W2B.3 11:20 – 11:40	Microstrip Line Non-Reciprocal Bandpass Filter With Tunable Center Frequency Girdhari Chaudhary, Jaehun Lee and Phanam Pech (Jeonbuk National University, Korea (South)); Yongchae Jeong (Chonbuk National University, Korea (South))
W2B.4 Invited 11:40 – 12:00	Study on Loss of Varactor-Loaded Tunable Microstrip Antennas Considering Q Factor <i>Eisuke Nishiyama, Ryo Araki and Ichihiko Toyoda (Saga University, Japan)</i>

W3A: Advanced mm-Wave/THz Circuit Design Techniques

13:30 - 15:10, Wednesday, 31-Aug, Room: Forum 1

Chairs: Ho-Jin Song, POSTECH

Byung-Wook Min, Yonsei University

W3A.1 Invited 13:30 – 13:50	RF Front-Ends for 6G Wireless Communication: Challenges and Opportunities Munkyo Seo (Sungkyunkwan University, Korea (South))
W3A.2 13:50 - 14:10	A D-Band Variable-Gain LNA With Triple-Inductive Coupling Gm-Boosting Ilgwon Kim (KAIST, Korea (South)); Songcheol Hong (IEEE, USA); Wansik Kim (LIG NEX1, Korea (South))
W3A.3 14:10 - 14:30	A Mm-Wave CMOS Feed-Forward Amplifier Based on a Quasi-Balanced Structure Minjae Jung (University of California, San Diego, USA); Gyoung June Jeon and Byung-Wook Min (Yonsei University, Korea (South))
W3A.4 14:30 - 14:50	Mm-Wave CMOS Matrix Distributed Amplifier for Ultra-Wideband Applications Gunwoo Park, Minwoo Kim and Sanggeun Jeon (Korea University, Korea (South))
W3A.5 14:50 – 15:10	A Novel Design of Gain-Boosting Amplifier for Gain-Bandwidth Improvement Jiseul Kim, Chan-Gyu Choi and Ho-Jin Song (POSTECH, Korea (South))

W3B: Emerging Technologies, Circuits, Systems, and Applications 13:30 – 15:10, Wednesday, 31-Aug, Room: Vernazza

Chairs: Tae Wook Kim, Yonsei University Jaeduk Han, Hanyang University

W3B.1 Invited 13:30 – 13:50	A Wearable Oscillator Tag for Heart Health Monitoring Tzyy-Sheng Jason Horng (National Sun Yat-sen University, Taiwan); Rezki El Arif (Universitas Brawijaya, Malang & National Sun Yat-Sen University, Kaohsiung, Taiwan); Wei-Chih Su (National Sun Yat-sen University, Taiwan)
W3B.2 Invited 13:50 – 14:10	Planar Microwave Sensors for Measuring Materials Composition and Mechanical Parameters Kamran Ghorbani and Amir Ebrahimi (RMIT University, Australia)
W3B.3 Invited 14:10 – 14:30	Emerging Computing Systems Utilizing Electro-Magnetic Near-Field Connectivity Noriyuki Miura (Osaka University, Japan)
W3B.4 Invited 14:30 – 14:50	140 GHz Silicon I/O Interconnect Exploiting Metadevices for Short-Range OOK Communications Hao Yu (SUSTech, China); Yuan Liang (Nanyang Technological University, Singapore); Hao Chi Zhang and Tie Jun Cui (Southeast University, China)
W3B.5 Invited 14:50 – 15:10	RF Front-End Transmitting System for Agricultural Applications Phanam Pech, Samdy Saron, Girdhari Chaudhary, Yu Kyeong Shin and Jun Gu Lee (Jeonbuk National University, Korea (South)); Yongchae Jeong (Chonbuk National University, Korea (South))

W4A: mm-Wave/THz Systems and Applications

15:30 - 17:10, Wednesday, 31-Aug, Room: Forum 1

Chairs: Ho-Jin Song, POSTECH

Ockgoo Lee, Pusan National University

W4A.1 Invited	Millimeter-Wave/THz CMOS Phased-Array Transceiver for 5G and Beyond
15:30 – 15:50	Kenichi Okada (Tokyo Institute of Technology, Japan)
W4A.2 Invited 15:50 – 16:10	Recent Researches of Microwave and Millimeter-Wave System Applications at National Taiwan University Huei Wang (National Taiwan University, Taiwan)
W4A.3 Invited	Potential of Terahertz Communication Not Limited to Short Range
16:10 – 16:30	Minoru Fujishima (Hiroshima University, Japan)
W4A.4 Invited	A 260GHz Wireless Transmission Over 100m for Beyond 5G Xhaul Networks
16:30 – 16:50	Soek-Bong Hyun (ETRI, Korea (South))
W4A.5 Invited 16:50 – 17:10	300-GHz Self-Heterodyne-Mixing-Receiver-Based Wireless Data Transmission Sangyeop Lee (Hiroshima University); Yohei Morishita (Panasonic Industry Co., Ltd.); Shuhei Amakawa, Takeshi Yoshida and Minoru Fujishima (Hiroshima University, Japan)

W4B: Radar and Imaging

15:30 – 17:10, Wednesday, 31-Aug, Room: Vernazza

Chairs: Minkyu Je, KAIST Wonbin Hong, POSTECH

W4B.1 Invited 15:30 – 15:50	Multiple-Input Multiple-Output-Beam Mixing Radar for Fast Sweeping Applications Tsai Zuo-Min (National Yang Ming Chiao Tung University & Institute of Communication Engineering, Taiwan)
W4B.2 Invited 15:50 – 16:10	Feature Extraction for Target Classification Using an FMCW Radar Sensor Sungho Lee (Korea Electronics Technology Institute, Korea (South))
W4B.3 16:10 – 16:30	Compact Concentric Antenna Module Integrated With Coplanar T/Rx Array and Multi-Channel CMOS Radar IC JiHo Lee, Hyun-Jun Dong, Hakmin Lee and Woo Hee Lim (Chung-Ang University, Korea (South)); Donghyun Baek (Chung-ang University, Korea (South)); Han Lim Lee (Chung-Ang University, Korea (South))
W4B.4	Frequency Discrimination Based on the Different Number of Peaks in
16:30 - 16:50	Envelope Detection of Two-Tone CW Radar
	Jae Young Sim and Jong-Ryul Yang (Yeungnam University, Korea (South))
W4B.5 16:50 – 17:10	Terahertz 3D Imaging With a 300-GHz CMOS Multi-Chip Array Detector <i>Kiryong Song (Samsung Electronics, Korea (South)); Doyoon Kim (Korea</i> <i>University, Korea (South)); Jungsoo Kim (ETRI, Korea (South)); Jai Heon Cho</i> <i>(Samsung Electronics, Korea (South)); Jae-Sung Rieh (Korea University, Korea</i> <i>(South))</i>

Author Index

Α

Α	
Abdulazhanov, Sukhrob	T5A.3
Ahn, ByungKuon	W1B.4
Ahn, Junhyuk	T4F.20
Ahn, Kwang-Ho	T4F.24
Ahn, Minjae	T4F.29
Ahn, Seungyoung	T3B.3
Akram, Muhammad Abrar	T5B.2
Alngar, Omar	T4F.2
Amakawa, Shuhei	T4F.9
	W4A.5
An, Donggeun	W1B.1
Araki, Ryo	W2B.4
Arif, Rezki El	W3B.1
B	
Bae, Sooncheol	T4F.5
Baek, Donghyun	W4B.3
Barakat, Adel	T4F.2
Bin, Soohyun	T4F.4
Byun, Gangil	W2B.1
С	
Chae, Seongje	T4F.27
Chae, Soo-Chang	T4F.24
	W1B.4
Chahardori, Mohammad	W1A.4
Chang, Da-Chiang	T5A.5
Chang, Hong-Yeh	T1A.4
Chang, Suho	W1B.1
Chang, Yin-Cheng	T5A.5
Chang, Ying-Chen	T4F.13
Chaudhary, Girdhari	W2B.3
	W3B.5
Chavez, Fredo	T4F.31
Chen, Chun-Lin	W2A.1
Chen, Jixin	W1A.1
Chen, Pin-Jung	T4F.13
Chen, Qiang	T4F.25
Chen, Qin	T4F.6
Chen, Shih-Yun	T3A.4
Chen, Zhe	W1A.1
Chevtchenko, Serguei	T4F.18
Chi, Ye-Eun	T4F.22
Chiu, Te-Yen	T5A.2

Cho, Hyunyoung	T4F.19
	W2B.2
	W1B.4
Cho, Jai Heon	W4B.5
Cho, Jeongmin	T4F.16
Choi, Chan-Gyu	W3A.5
Choi, Jaehyouk	T1A.2
Choi, Seung-Uk	T3A.5
Choi, Ui-Gyu	T4F.11
Choi, Woojin	T4F.5
Choi, Young Chan	T1B.1
	T4F.4
	T4F.5
Choo, Hosung	T4F.21
	T4F.17
	T4F.26
	T4F.16
Chung, Jae-Young	W1B.2
Cui, Tie Jun	W3B.4

D

Dang, Bowen	T4F.25
Ding, Xuan	T3A.1
Dong, Hyun-Jun	W4B.3
Duan, Haipeng	T4F.6
Dzagbletey, Philip	W1B.2

E

Ebrahimi, Amir	W3B.2

F

Fujimoto, Shinichiro	T4F.9
Fujishima, Minoru	W4A.3
	T4F.9
	W4A.5
Fujita, Masao	T4F.23

G

T5A.3
W3B.2
T3A.1
W2A.3

Η

Author Index

Ha, Sohmyung	T5B.2	K	
Hara, Shinsuke	T4F.30	Kämpfe Thomas	T5A 3
	T4F.23	Kang Funjung	T4F 17
Hayashi, Yuki	T4F.14	Kang, Lanjang	T4F 21
Heo, Deukhyoun	W1A.4	Kang Sangwoo	T4F 27
Hong, Songcheol	W3A.2	Kang, Sungwoo	T/IF 31
Hong, Wei	W1A.1	Karahan Emir	\\\/24.2
Hong, Wonbin	T4F.20	Kasamatsu Akifumi	T/F 23
	W1B.1	Rasamatsu, Akhumi	T4F 20
Hoque, Md	W1A.4	Kaynak Mehmet	T5A 1
Horng, Tzyy-Sheng Jason	W3B.1	Khandelwal Sourabh	T/E 21
Hou, Debin	W1A.1	Kim Daebyeon	141.51 W/1B 1
Hsieh, Chaoping	T5A.5	Kim, Davoon	
Hsu, Heng-Tung	T4F.18	Kim, Doyoon	TAE 16
Hsu, Shawn	T5A.5	Kim, Hyungoun	TEA 4
Hu, Chenming	T4F.31	Kini, nyungeun	13A.4 \\\/1A_2
Hung, Chuan-Chi	W2A.1	Kim Ilawon	WIA.5
Huynh, Dang Khoa	T5A.3	Kim, Joong Wook	W3A.Z
Hwang, Jiwon	T4F.5	Killi, Jeolig-Wook	
Hwang, Myeonggin	W1B.1		146.19
	T4F.20	Kim linhuun	
Hyun, Soek-Bong	W4A.4	Kim, Jinnyun Kim, Jisoul	14F.7
, , ,		Kim, Jangmann	VV 5A.5
1		Kim, Jungsoo	14F.20
	T4F 22	Kim, Jungsoo	
	14F.25 TAF 14	Kim, Juwon	14F.0 T1A 0
ποη, ποραγακί	146.14	Kim, Juyeop	T1A.2
		Kiili, Ki-Jili	14F.24
J		Kim, Kyunghwan	13A.5 T4F 10
Jang, Ah-Jung	T4F.28	Kim Minuso	14F.10
Jang, Chung-Geun	T4F.24	Kim, Minwoo	
Jang, Doyoung	T4F.16	Kim, Sanghoek	120.1
	T4F.26	Kim, Sol	WZB.Z
Jang, Taekwang	T1A.1		VV1B.4
Jang, Yeongmin	W1A.3		14F.19
Jeon, Gyoung June	W3A.3	Kim, Soo-Jeong	14F.24
Jeon, Hyeongjin	T1B.3	Kim, wansik	W3A.2
Jeon, Sanggeun	W3A.4	котоки, кіуотака	141.14
Jeon, Youngchae	W1A.3	Ku, Hyunchul	14F.29
Jeong, Jaehoon	T5A.4	Kuo, Chien-Nan	11A.3
Jeong, Jinho	T5A.4		
	W1A.3		
Jeong, Yongchae	W2B.3	Lai, Wen Cheng	T4F.15
	W3B.5	Le, Quang Huy	T5A.3
Jin, Guixiang	W2A.3	Lee, Chang-Hyun	T4F.16
Jung, Minjae	W3A.3	Lee, Cheonga	W1B.1
		Lee, Ealwan	T3B.4

Author Index

Lee, Hakmin Lee, Han Lim Lee, Hyo-Won Lee, In-Seong Lee, Jaehun Lee, JiHo Lee, Ji-Hoon Lee, Jun Gu Lee, Junghyup Lee, Kangseop	W4B.3 W4B.3 W2B.2 T4F.28 W2B.3 W4B.3 T4F.19 W3B.5 T3B.1 T3A.5
Lee, Seonghi Lee, Seunghoon	T4F.10 T4F.23 W4A.5 T3B.3 T4F.10
Lee, Sungho Lehninger, David Li, Chenguang	T3A.5 W4B.2 T5A.3 T1B.2 T3A.3
Li, Chun-Hsing Li, Jiamin Li, Lianming Li, Qiang Liang, Yuan Lim, Woo Hee Lin, Ta-Yeh	T5A.2 T3B.5 T4F.6 T3B.2 W3B.4 W4B.3 T5A.5
Liu, Zheng M Min, Byung-Wook	W2A.2 T4F.8 W3A.3
Miura, Noriyuki Miyaji, Kousuke Mokri, Mohammad Morishita, Yohei Motoyoshi, Mizuki	W3B.3 T5B.5 W1A.4 W4A.5 W1B.3 T4F.25
N Na, Jongyun Nagahari, Eisai Nguyen, Van Thang Nishiyama, Eisuke	T1B.3 T4F.25 W1B.2 W2B.4

0

Oh, Hansik	T1B.3
Oh, Ju-lk	T4F.19
Oh, Jungsuek	W1A.2
	T4F.7
Oh, Seongwoog	W1A.2
	T4F.7
Oh, Sungjae	T1B.1
Ohm, Sungsik	T4F.17
Okada, Kenichi	W4A.1

Ρ

Park, Gunwoo	W3A.4
Park, Jinki	T4F.22
Park, Ju-Hyeon	T4F.11
Park, Jung-Dong	W2A.4
Park, Seong-Ook	T4F.22
Park, Suneui	T1A.2
Park, Won-Kwang	T4F.27
Park, Yong Bae	T4F.26
Pech, Phanam	W3B.5
	W2B.3
Pokharel, Ramesh	T4F.2

Q

Qin. Haogi	W2A.3
ani) naoqi	112/113

R

Rieh, Jae-Sung	T4F.1
	W4B.5

S

_
5
5
2
7
1
3
5
О
4

Author Index					
	T4F.28	Wolf, Mihaela	T4F.18		
Son, Heekang	T4F.1	Wu, Xu	T4F.6		
Sonehara, Makoto	T5B.5	Wuerfl, Joachim.	T4F.18		
Song, Ho-Jin	W3A.5				
-	T4F.10	X			
	T3A.5	Xu Haa	14/24 2		
Song, Kiryong	W4B.5		VVZA.5 T/E 25		
Song, Kyunghwan	T3B.3	Xu, Juliyi	141.25		
Su, Wei-Chih	W3B.1	V			
Suematsu, Noriharu	W1B.3				
	T4F.25	Yabuki, Shunsuke	T4F.9		
		Yan, Na	W2A.3		
т		Yan, Pinpin	W1A.1		
- Takano Kyova	T4F 23	Yang, Jong-Ryul	W4B.4		
Takano, kyoya	T4F 30		T4F.11		
Takatera Yuji	T4F 25		T4F.28		
Tanaka Satoshi	T1R 4	Yang, Kai-Wen	T5B.2		
Turiaka, Satosin	T4F 3	Yang, Tao	T3A.2		
Temga lean	W1B 3	Yang, Youngoo	T1B.1		
Tovoda Ichihiko	W2B 4		T4F.4		
Toyoda Masayuki	T4F 23		11B.3		
Trinh Van-Son	W2A 4		T4F.5		
Tsai, Jeng-Han	T4F.13	Yin, Rui	W2A.3		
	W2A 1	Yin, Sen	13A.3		
Tsai, Wei Hsuan	T4F.12	Yoo, Jerald	13B.5		
Tsao. Yi-Fan	T4F.18	Yoo, Junghwan	14F.1		
		Yoon, Heeln Yoohida, Takaahi	11A.2		
11		Yoshida, Takeshi	14F.9		
Umada Vahtara	T4F 20	Your Yourges	VV4A.5		
omeda, fontaro	146.30	Youn, Youngho	VV 1B.1		
V		Vu. Bo	14F.20 T2A 1		
V			T3A.1		
Verho, Sebastian	W1B.2		15A.1		
		ти, пао Хи. Jong Won	VV 3 D.4		
W		fu, Jong-Woll	VVZD.Z		
Wang, Dongming	T4F.6		14F.19 \\\/1D /		
Wang, Huei	W4A.2		VVID.4		
	T4F.12	-			
Wang, Ping-Yi	T5A.5	∠			
Wang, Ruitao	T1B.2	Zhang, Hao Chi	W3B.4		
	T3A.3	Zhang, Jian	T3A.3		
Wang, Wei-Chien	T1A.3		T1B.2		
Wang, Yan	T1B.2	Zhang, Rui	W1A.1		
-	T3A.3	Zhou, Peigen	W1A.1		
Wang, Yuan	T4F.18	Zhu, Wei	T3A.3		
Wang, Yunshan	T4F.12		T1B.2		
Watanabe, Issei	T4F.23	Zuo-Min, Tsai	W4B.1		

2022 IEEE International Symposium on Radio-Frequency Integration Technology

August 29 – 31, 2022 • Busan Korea • www.RFIT2022.org